ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdm GIF version

Theorem fnresdm 5431
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
Assertion
Ref Expression
fnresdm (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)

Proof of Theorem fnresdm
StepHypRef Expression
1 fnrel 5418 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 fndm 5419 . . 3 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 eqimss 3278 . . 3 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
42, 3syl 14 . 2 (𝐹 Fn 𝐴 → dom 𝐹𝐴)
5 relssres 5042 . 2 ((Rel 𝐹 ∧ dom 𝐹𝐴) → (𝐹𝐴) = 𝐹)
61, 4, 5syl2anc 411 1 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197  dom cdm 4718  cres 4720  Rel wrel 4723   Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-dm 4728  df-res 4730  df-fun 5319  df-fn 5320
This theorem is referenced by:  fnima  5441  fresin  5503  resasplitss  5504  fnsnsplitss  5837  fsnunfv  5839  fsnunres  5840  fnsnsplitdc  6649  fnfi  7099  fseq1p1m1  10286  facnn  10944  fac0  10945  rnrhmsubrg  14210  cnfldms  15204  dfrelog  15528  domomsubct  16326
  Copyright terms: Public domain W3C validator