Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnresdm | GIF version |
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
Ref | Expression |
---|---|
fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5294 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | fndm 5295 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | eqimss 3201 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
5 | relssres 4927 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
6 | 1, 4, 5 | syl2anc 409 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 dom cdm 4609 ↾ cres 4611 Rel wrel 4614 Fn wfn 5191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-dm 4619 df-res 4621 df-fun 5198 df-fn 5199 |
This theorem is referenced by: fnima 5314 fresin 5374 resasplitss 5375 fnsnsplitss 5692 fsnunfv 5694 fsnunres 5695 fnsnsplitdc 6481 fnfi 6910 fseq1p1m1 10037 facnn 10648 fac0 10649 dfrelog 13496 |
Copyright terms: Public domain | W3C validator |