ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdm GIF version

Theorem fnresdm 5394
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
Assertion
Ref Expression
fnresdm (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)

Proof of Theorem fnresdm
StepHypRef Expression
1 fnrel 5381 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 fndm 5382 . . 3 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 eqimss 3251 . . 3 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
42, 3syl 14 . 2 (𝐹 Fn 𝐴 → dom 𝐹𝐴)
5 relssres 5006 . 2 ((Rel 𝐹 ∧ dom 𝐹𝐴) → (𝐹𝐴) = 𝐹)
61, 4, 5syl2anc 411 1 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3170  dom cdm 4683  cres 4685  Rel wrel 4688   Fn wfn 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-dm 4693  df-res 4695  df-fun 5282  df-fn 5283
This theorem is referenced by:  fnima  5404  fresin  5466  resasplitss  5467  fnsnsplitss  5796  fsnunfv  5798  fsnunres  5799  fnsnsplitdc  6604  fnfi  7053  fseq1p1m1  10236  facnn  10894  fac0  10895  rnrhmsubrg  14089  cnfldms  15083  dfrelog  15407  domomsubct  16079
  Copyright terms: Public domain W3C validator