ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdm GIF version

Theorem fnresdm 5364
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
Assertion
Ref Expression
fnresdm (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)

Proof of Theorem fnresdm
StepHypRef Expression
1 fnrel 5353 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 fndm 5354 . . 3 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 eqimss 3234 . . 3 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
42, 3syl 14 . 2 (𝐹 Fn 𝐴 → dom 𝐹𝐴)
5 relssres 4981 . 2 ((Rel 𝐹 ∧ dom 𝐹𝐴) → (𝐹𝐴) = 𝐹)
61, 4, 5syl2anc 411 1 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3154  dom cdm 4660  cres 4662  Rel wrel 4665   Fn wfn 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-dm 4670  df-res 4672  df-fun 5257  df-fn 5258
This theorem is referenced by:  fnima  5373  fresin  5433  resasplitss  5434  fnsnsplitss  5758  fsnunfv  5760  fsnunres  5761  fnsnsplitdc  6560  fnfi  6997  fseq1p1m1  10163  facnn  10801  fac0  10802  rnrhmsubrg  13751  cnfldms  14715  dfrelog  15036
  Copyright terms: Public domain W3C validator