| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnresdm | GIF version | ||
| Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5357 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 5358 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | eqimss 3238 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
| 5 | relssres 4985 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 1, 4, 5 | syl2anc 411 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 dom cdm 4664 ↾ cres 4666 Rel wrel 4669 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-dm 4674 df-res 4676 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: fnima 5379 fresin 5439 resasplitss 5440 fnsnsplitss 5764 fsnunfv 5766 fsnunres 5767 fnsnsplitdc 6572 fnfi 7011 fseq1p1m1 10186 facnn 10836 fac0 10837 rnrhmsubrg 13884 cnfldms 14856 dfrelog 15180 domomsubct 15732 |
| Copyright terms: Public domain | W3C validator |