![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ocnv | GIF version |
Description: The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1ocnv | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5146 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | dfrel2 4915 | . . . . . 6 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
3 | fneq1 5136 | . . . . . . 7 ⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) | |
4 | 3 | biimprd 157 | . . . . . 6 ⊢ (◡◡𝐹 = 𝐹 → (𝐹 Fn 𝐴 → ◡◡𝐹 Fn 𝐴)) |
5 | 2, 4 | sylbi 120 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 Fn 𝐴 → ◡◡𝐹 Fn 𝐴)) |
6 | 1, 5 | mpcom 36 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ◡◡𝐹 Fn 𝐴) |
7 | 6 | anim2i 335 | . . 3 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐹 Fn 𝐴) → (◡𝐹 Fn 𝐵 ∧ ◡◡𝐹 Fn 𝐴)) |
8 | 7 | ancoms 265 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵) → (◡𝐹 Fn 𝐵 ∧ ◡◡𝐹 Fn 𝐴)) |
9 | dff1o4 5296 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
10 | dff1o4 5296 | . 2 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 ↔ (◡𝐹 Fn 𝐵 ∧ ◡◡𝐹 Fn 𝐴)) | |
11 | 8, 9, 10 | 3imtr4i 200 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ◡ccnv 4466 Rel wrel 4472 Fn wfn 5044 –1-1-onto→wf1o 5048 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 |
This theorem is referenced by: f1ocnvb 5302 f1orescnv 5304 f1imacnv 5305 f1cnv 5312 f1ococnv1 5317 f1oresrab 5502 f1ocnvfv2 5595 f1ocnvdm 5598 f1ocnvfvrneq 5599 fcof1o 5606 isocnv 5628 f1ofveu 5678 mapsnf1o3 6494 ener 6576 en0 6592 en1 6596 mapen 6642 ssenen 6647 preimaf1ofi 6740 ordiso2 6808 caseinl 6862 enomnilem 6881 fnn0nninf 9992 0tonninf 9994 1tonninf 9995 iseqf1olemkle 10050 iseqf1olemklt 10051 iseqf1olemqcl 10052 iseqf1olemnab 10054 iseqf1olemmo 10058 iseqf1olemqk 10060 seq3f1olemqsumkj 10064 seq3f1olemqsumk 10065 seq3f1olemstep 10067 hashfz1 10322 hashfacen 10372 seq3coll 10378 cnrecnv 10475 isummolemnm 10938 summodclem3 10939 summodclem2a 10940 sqpweven 11596 2sqpwodd 11597 phimullem 11644 xpnnen 11650 exmidsbthrlem 12633 |
Copyright terms: Public domain | W3C validator |