Proof of Theorem f1ocnv
Step | Hyp | Ref
| Expression |
1 | | fnrel 5296 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → Rel 𝐹) |
2 | | dfrel2 5061 |
. . . . . 6
⊢ (Rel
𝐹 ↔ ◡◡𝐹 = 𝐹) |
3 | | fneq1 5286 |
. . . . . . 7
⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) |
4 | 3 | biimprd 157 |
. . . . . 6
⊢ (◡◡𝐹 = 𝐹 → (𝐹 Fn 𝐴 → ◡◡𝐹 Fn 𝐴)) |
5 | 2, 4 | sylbi 120 |
. . . . 5
⊢ (Rel
𝐹 → (𝐹 Fn 𝐴 → ◡◡𝐹 Fn 𝐴)) |
6 | 1, 5 | mpcom 36 |
. . . 4
⊢ (𝐹 Fn 𝐴 → ◡◡𝐹 Fn 𝐴) |
7 | 6 | anim2i 340 |
. . 3
⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐹 Fn 𝐴) → (◡𝐹 Fn 𝐵 ∧ ◡◡𝐹 Fn 𝐴)) |
8 | 7 | ancoms 266 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵) → (◡𝐹 Fn 𝐵 ∧ ◡◡𝐹 Fn 𝐴)) |
9 | | dff1o4 5450 |
. 2
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
10 | | dff1o4 5450 |
. 2
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 ↔ (◡𝐹 Fn 𝐵 ∧ ◡◡𝐹 Fn 𝐴)) |
11 | 8, 9, 10 | 3imtr4i 200 |
1
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |