Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topontopn | GIF version |
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tsettps.a | ⊢ 𝐴 = (Base‘𝐾) |
tsettps.j | ⊢ 𝐽 = (TopSet‘𝐾) |
Ref | Expression |
---|---|
topontopn | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 12652 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
2 | tsetslid 12545 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
3 | 2 | slotslfn 12420 | . . . . 5 ⊢ TopSet Fn V |
4 | fnrel 5286 | . . . . 5 ⊢ (TopSet Fn V → Rel TopSet) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ Rel TopSet |
6 | 0opn 12644 | . . . . 5 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
7 | tsettps.j | . . . . 5 ⊢ 𝐽 = (TopSet‘𝐾) | |
8 | 6, 7 | eleqtrdi 2259 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ (TopSet‘𝐾)) |
9 | relelfvdm 5518 | . . . 4 ⊢ ((Rel TopSet ∧ ∅ ∈ (TopSet‘𝐾)) → 𝐾 ∈ dom TopSet) | |
10 | 5, 8, 9 | sylancr 411 | . . 3 ⊢ (𝐽 ∈ Top → 𝐾 ∈ dom TopSet) |
11 | 1, 10 | syl 14 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ dom TopSet) |
12 | toponuni 12653 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = ∪ 𝐽) | |
13 | eqimss2 3197 | . . . 4 ⊢ (𝐴 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝐴) | |
14 | 12, 13 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → ∪ 𝐽 ⊆ 𝐴) |
15 | sspwuni 3950 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝐴 ↔ ∪ 𝐽 ⊆ 𝐴) | |
16 | 14, 15 | sylibr 133 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴) |
17 | tsettps.a | . . 3 ⊢ 𝐴 = (Base‘𝐾) | |
18 | 17, 7 | topnidg 12569 | . 2 ⊢ ((𝐾 ∈ dom TopSet ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 = (TopOpen‘𝐾)) |
19 | 11, 16, 18 | syl2anc 409 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 ∪ cuni 3789 dom cdm 4604 Rel wrel 4609 Fn wfn 5183 ‘cfv 5188 Basecbs 12394 TopSetcts 12463 TopOpenctopn 12557 Topctop 12635 TopOnctopon 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-ndx 12397 df-slot 12398 df-base 12400 df-tset 12476 df-rest 12558 df-topn 12559 df-top 12636 df-topon 12649 |
This theorem is referenced by: tsettps 12676 |
Copyright terms: Public domain | W3C validator |