| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topontopn | GIF version | ||
| Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tsettps.a | ⊢ 𝐴 = (Base‘𝐾) |
| tsettps.j | ⊢ 𝐽 = (TopSet‘𝐾) |
| Ref | Expression |
|---|---|
| topontopn | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 14561 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 2 | tsetslid 13095 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 3 | 2 | slotslfn 12933 | . . . . 5 ⊢ TopSet Fn V |
| 4 | fnrel 5381 | . . . . 5 ⊢ (TopSet Fn V → Rel TopSet) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ Rel TopSet |
| 6 | 0opn 14553 | . . . . 5 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 7 | tsettps.j | . . . . 5 ⊢ 𝐽 = (TopSet‘𝐾) | |
| 8 | 6, 7 | eleqtrdi 2299 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ (TopSet‘𝐾)) |
| 9 | relelfvdm 5621 | . . . 4 ⊢ ((Rel TopSet ∧ ∅ ∈ (TopSet‘𝐾)) → 𝐾 ∈ dom TopSet) | |
| 10 | 5, 8, 9 | sylancr 414 | . . 3 ⊢ (𝐽 ∈ Top → 𝐾 ∈ dom TopSet) |
| 11 | 1, 10 | syl 14 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ dom TopSet) |
| 12 | toponuni 14562 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = ∪ 𝐽) | |
| 13 | eqimss2 3252 | . . . 4 ⊢ (𝐴 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝐴) | |
| 14 | 12, 13 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → ∪ 𝐽 ⊆ 𝐴) |
| 15 | sspwuni 4018 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝐴 ↔ ∪ 𝐽 ⊆ 𝐴) | |
| 16 | 14, 15 | sylibr 134 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴) |
| 17 | tsettps.a | . . 3 ⊢ 𝐴 = (Base‘𝐾) | |
| 18 | 17, 7 | topnidg 13159 | . 2 ⊢ ((𝐾 ∈ dom TopSet ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 = (TopOpen‘𝐾)) |
| 19 | 11, 16, 18 | syl2anc 411 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 ∅c0 3464 𝒫 cpw 3621 ∪ cuni 3856 dom cdm 4683 Rel wrel 4688 Fn wfn 5275 ‘cfv 5280 Basecbs 12907 TopSetcts 12990 TopOpenctopn 13147 Topctop 14544 TopOnctopon 14557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-ndx 12910 df-slot 12911 df-base 12913 df-tset 13003 df-rest 13148 df-topn 13149 df-top 14545 df-topon 14558 |
| This theorem is referenced by: tsettps 14585 cnfldms 15083 cnfldtopn 15086 |
| Copyright terms: Public domain | W3C validator |