Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topontopn | GIF version |
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tsettps.a | ⊢ 𝐴 = (Base‘𝐾) |
tsettps.j | ⊢ 𝐽 = (TopSet‘𝐾) |
Ref | Expression |
---|---|
topontopn | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 12806 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
2 | tsetslid 12568 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
3 | 2 | slotslfn 12442 | . . . . 5 ⊢ TopSet Fn V |
4 | fnrel 5296 | . . . . 5 ⊢ (TopSet Fn V → Rel TopSet) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ Rel TopSet |
6 | 0opn 12798 | . . . . 5 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
7 | tsettps.j | . . . . 5 ⊢ 𝐽 = (TopSet‘𝐾) | |
8 | 6, 7 | eleqtrdi 2263 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ (TopSet‘𝐾)) |
9 | relelfvdm 5528 | . . . 4 ⊢ ((Rel TopSet ∧ ∅ ∈ (TopSet‘𝐾)) → 𝐾 ∈ dom TopSet) | |
10 | 5, 8, 9 | sylancr 412 | . . 3 ⊢ (𝐽 ∈ Top → 𝐾 ∈ dom TopSet) |
11 | 1, 10 | syl 14 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ dom TopSet) |
12 | toponuni 12807 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = ∪ 𝐽) | |
13 | eqimss2 3202 | . . . 4 ⊢ (𝐴 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝐴) | |
14 | 12, 13 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → ∪ 𝐽 ⊆ 𝐴) |
15 | sspwuni 3957 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝐴 ↔ ∪ 𝐽 ⊆ 𝐴) | |
16 | 14, 15 | sylibr 133 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴) |
17 | tsettps.a | . . 3 ⊢ 𝐴 = (Base‘𝐾) | |
18 | 17, 7 | topnidg 12592 | . 2 ⊢ ((𝐾 ∈ dom TopSet ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 = (TopOpen‘𝐾)) |
19 | 11, 16, 18 | syl2anc 409 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 ∅c0 3414 𝒫 cpw 3566 ∪ cuni 3796 dom cdm 4611 Rel wrel 4616 Fn wfn 5193 ‘cfv 5198 Basecbs 12416 TopSetcts 12486 TopOpenctopn 12580 Topctop 12789 TopOnctopon 12802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-ndx 12419 df-slot 12420 df-base 12422 df-tset 12499 df-rest 12581 df-topn 12582 df-top 12790 df-topon 12803 |
This theorem is referenced by: tsettps 12830 |
Copyright terms: Public domain | W3C validator |