| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topontopn | GIF version | ||
| Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tsettps.a | ⊢ 𝐴 = (Base‘𝐾) |
| tsettps.j | ⊢ 𝐽 = (TopSet‘𝐾) |
| Ref | Expression |
|---|---|
| topontopn | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 14428 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 2 | tsetslid 12962 | . . . . . 6 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 3 | 2 | slotslfn 12800 | . . . . 5 ⊢ TopSet Fn V |
| 4 | fnrel 5371 | . . . . 5 ⊢ (TopSet Fn V → Rel TopSet) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ Rel TopSet |
| 6 | 0opn 14420 | . . . . 5 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 7 | tsettps.j | . . . . 5 ⊢ 𝐽 = (TopSet‘𝐾) | |
| 8 | 6, 7 | eleqtrdi 2297 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ (TopSet‘𝐾)) |
| 9 | relelfvdm 5607 | . . . 4 ⊢ ((Rel TopSet ∧ ∅ ∈ (TopSet‘𝐾)) → 𝐾 ∈ dom TopSet) | |
| 10 | 5, 8, 9 | sylancr 414 | . . 3 ⊢ (𝐽 ∈ Top → 𝐾 ∈ dom TopSet) |
| 11 | 1, 10 | syl 14 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ dom TopSet) |
| 12 | toponuni 14429 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = ∪ 𝐽) | |
| 13 | eqimss2 3247 | . . . 4 ⊢ (𝐴 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝐴) | |
| 14 | 12, 13 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → ∪ 𝐽 ⊆ 𝐴) |
| 15 | sspwuni 4011 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝐴 ↔ ∪ 𝐽 ⊆ 𝐴) | |
| 16 | 14, 15 | sylibr 134 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴) |
| 17 | tsettps.a | . . 3 ⊢ 𝐴 = (Base‘𝐾) | |
| 18 | 17, 7 | topnidg 13026 | . 2 ⊢ ((𝐾 ∈ dom TopSet ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 = (TopOpen‘𝐾)) |
| 19 | 11, 16, 18 | syl2anc 411 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ⊆ wss 3165 ∅c0 3459 𝒫 cpw 3615 ∪ cuni 3849 dom cdm 4674 Rel wrel 4679 Fn wfn 5265 ‘cfv 5270 Basecbs 12774 TopSetcts 12857 TopOpenctopn 13014 Topctop 14411 TopOnctopon 14424 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-ndx 12777 df-slot 12778 df-base 12780 df-tset 12870 df-rest 13015 df-topn 13016 df-top 14412 df-topon 14425 |
| This theorem is referenced by: tsettps 14452 cnfldms 14950 cnfldtopn 14953 |
| Copyright terms: Public domain | W3C validator |