ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontopn GIF version

Theorem topontopn 12204
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
topontopn (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))

Proof of Theorem topontopn
StepHypRef Expression
1 topontop 12181 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
2 tsetslid 12109 . . . . . 6 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
32slotslfn 11985 . . . . 5 TopSet Fn V
4 fnrel 5221 . . . . 5 (TopSet Fn V → Rel TopSet)
53, 4ax-mp 5 . . . 4 Rel TopSet
6 0opn 12173 . . . . 5 (𝐽 ∈ Top → ∅ ∈ 𝐽)
7 tsettps.j . . . . 5 𝐽 = (TopSet‘𝐾)
86, 7eleqtrdi 2232 . . . 4 (𝐽 ∈ Top → ∅ ∈ (TopSet‘𝐾))
9 relelfvdm 5453 . . . 4 ((Rel TopSet ∧ ∅ ∈ (TopSet‘𝐾)) → 𝐾 ∈ dom TopSet)
105, 8, 9sylancr 410 . . 3 (𝐽 ∈ Top → 𝐾 ∈ dom TopSet)
111, 10syl 14 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ dom TopSet)
12 toponuni 12182 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = 𝐽)
13 eqimss2 3152 . . . 4 (𝐴 = 𝐽 𝐽𝐴)
1412, 13syl 14 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽𝐴)
15 sspwuni 3897 . . 3 (𝐽 ⊆ 𝒫 𝐴 𝐽𝐴)
1614, 15sylibr 133 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴)
17 tsettps.a . . 3 𝐴 = (Base‘𝐾)
1817, 7topnidg 12133 . 2 ((𝐾 ∈ dom TopSet ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 = (TopOpen‘𝐾))
1911, 16, 18syl2anc 408 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  Vcvv 2686  wss 3071  c0 3363  𝒫 cpw 3510   cuni 3736  dom cdm 4539  Rel wrel 4544   Fn wfn 5118  cfv 5123  Basecbs 11959  TopSetcts 12027  TopOpenctopn 12121  Topctop 12164  TopOnctopon 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-9 8786  df-ndx 11962  df-slot 11963  df-base 11965  df-tset 12040  df-rest 12122  df-topn 12123  df-top 12165  df-topon 12178
This theorem is referenced by:  tsettps  12205
  Copyright terms: Public domain W3C validator