ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontopn GIF version

Theorem topontopn 14584
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
topontopn (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))

Proof of Theorem topontopn
StepHypRef Expression
1 topontop 14561 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
2 tsetslid 13095 . . . . . 6 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
32slotslfn 12933 . . . . 5 TopSet Fn V
4 fnrel 5381 . . . . 5 (TopSet Fn V → Rel TopSet)
53, 4ax-mp 5 . . . 4 Rel TopSet
6 0opn 14553 . . . . 5 (𝐽 ∈ Top → ∅ ∈ 𝐽)
7 tsettps.j . . . . 5 𝐽 = (TopSet‘𝐾)
86, 7eleqtrdi 2299 . . . 4 (𝐽 ∈ Top → ∅ ∈ (TopSet‘𝐾))
9 relelfvdm 5621 . . . 4 ((Rel TopSet ∧ ∅ ∈ (TopSet‘𝐾)) → 𝐾 ∈ dom TopSet)
105, 8, 9sylancr 414 . . 3 (𝐽 ∈ Top → 𝐾 ∈ dom TopSet)
111, 10syl 14 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ dom TopSet)
12 toponuni 14562 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = 𝐽)
13 eqimss2 3252 . . . 4 (𝐴 = 𝐽 𝐽𝐴)
1412, 13syl 14 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽𝐴)
15 sspwuni 4018 . . 3 (𝐽 ⊆ 𝒫 𝐴 𝐽𝐴)
1614, 15sylibr 134 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴)
17 tsettps.a . . 3 𝐴 = (Base‘𝐾)
1817, 7topnidg 13159 . 2 ((𝐾 ∈ dom TopSet ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 = (TopOpen‘𝐾))
1911, 16, 18syl2anc 411 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  c0 3464  𝒫 cpw 3621   cuni 3856  dom cdm 4683  Rel wrel 4688   Fn wfn 5275  cfv 5280  Basecbs 12907  TopSetcts 12990  TopOpenctopn 13147  Topctop 14544  TopOnctopon 14557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-ndx 12910  df-slot 12911  df-base 12913  df-tset 13003  df-rest 13148  df-topn 13149  df-top 14545  df-topon 14558
This theorem is referenced by:  tsettps  14585  cnfldms  15083  cnfldtopn  15086
  Copyright terms: Public domain W3C validator