ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontopn GIF version

Theorem topontopn 14205
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
topontopn (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))

Proof of Theorem topontopn
StepHypRef Expression
1 topontop 14182 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
2 tsetslid 12805 . . . . . 6 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
32slotslfn 12644 . . . . 5 TopSet Fn V
4 fnrel 5352 . . . . 5 (TopSet Fn V → Rel TopSet)
53, 4ax-mp 5 . . . 4 Rel TopSet
6 0opn 14174 . . . . 5 (𝐽 ∈ Top → ∅ ∈ 𝐽)
7 tsettps.j . . . . 5 𝐽 = (TopSet‘𝐾)
86, 7eleqtrdi 2286 . . . 4 (𝐽 ∈ Top → ∅ ∈ (TopSet‘𝐾))
9 relelfvdm 5586 . . . 4 ((Rel TopSet ∧ ∅ ∈ (TopSet‘𝐾)) → 𝐾 ∈ dom TopSet)
105, 8, 9sylancr 414 . . 3 (𝐽 ∈ Top → 𝐾 ∈ dom TopSet)
111, 10syl 14 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ dom TopSet)
12 toponuni 14183 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = 𝐽)
13 eqimss2 3234 . . . 4 (𝐴 = 𝐽 𝐽𝐴)
1412, 13syl 14 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽𝐴)
15 sspwuni 3997 . . 3 (𝐽 ⊆ 𝒫 𝐴 𝐽𝐴)
1614, 15sylibr 134 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴)
17 tsettps.a . . 3 𝐴 = (Base‘𝐾)
1817, 7topnidg 12863 . 2 ((𝐾 ∈ dom TopSet ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 = (TopOpen‘𝐾))
1911, 16, 18syl2anc 411 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  c0 3446  𝒫 cpw 3601   cuni 3835  dom cdm 4659  Rel wrel 4664   Fn wfn 5249  cfv 5254  Basecbs 12618  TopSetcts 12701  TopOpenctopn 12851  Topctop 14165  TopOnctopon 14178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-ndx 12621  df-slot 12622  df-base 12624  df-tset 12714  df-rest 12852  df-topn 12853  df-top 14166  df-topon 14179
This theorem is referenced by:  tsettps  14206
  Copyright terms: Public domain W3C validator