ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnex GIF version

Theorem fnex 5787
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 5786. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnex ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnex
StepHypRef Expression
1 fnrel 5357 . . 3 (𝐹 Fn 𝐴 → Rel 𝐹)
21adantr 276 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → Rel 𝐹)
3 df-fn 5262 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
4 eleq1a 2268 . . . . . 6 (𝐴𝐵 → (dom 𝐹 = 𝐴 → dom 𝐹𝐵))
54impcom 125 . . . . 5 ((dom 𝐹 = 𝐴𝐴𝐵) → dom 𝐹𝐵)
6 resfunexg 5786 . . . . 5 ((Fun 𝐹 ∧ dom 𝐹𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
75, 6sylan2 286 . . . 4 ((Fun 𝐹 ∧ (dom 𝐹 = 𝐴𝐴𝐵)) → (𝐹 ↾ dom 𝐹) ∈ V)
87anassrs 400 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ 𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
93, 8sylanb 284 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹 ↾ dom 𝐹) ∈ V)
10 resdm 4986 . . . 4 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
1110eleq1d 2265 . . 3 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ∈ V ↔ 𝐹 ∈ V))
1211biimpa 296 . 2 ((Rel 𝐹 ∧ (𝐹 ↾ dom 𝐹) ∈ V) → 𝐹 ∈ V)
132, 9, 12syl2anc 411 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  dom cdm 4664  cres 4666  Rel wrel 4669  Fun wfun 5253   Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267
This theorem is referenced by:  funex  5788  fex  5794  offval  6147  ofrfval  6148  uchoice  6204  tfrlemibex  6396  tfr1onlembex  6412  fndmeng  6878  cc2lem  7349  frecfzennn  10535  prdsbas2  12981  prdsplusgval  12985  prdsplusgfval  12986  prdsmulrval  12987  prdsmulrfval  12988  xpscf  13049  mulgval  13328  mulgfng  13330  invrfvald  13754
  Copyright terms: Public domain W3C validator