Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fn0 | GIF version |
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5286 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
2 | fndm 5287 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
3 | reldm0 4822 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
4 | 3 | biimpar 295 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
5 | 1, 2, 4 | syl2anc 409 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
6 | fun0 5246 | . . . 4 ⊢ Fun ∅ | |
7 | dm0 4818 | . . . 4 ⊢ dom ∅ = ∅ | |
8 | df-fn 5191 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
9 | 6, 7, 8 | mpbir2an 932 | . . 3 ⊢ ∅ Fn ∅ |
10 | fneq1 5276 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
11 | 9, 10 | mpbiri 167 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
12 | 5, 11 | impbii 125 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∅c0 3409 dom cdm 4604 Rel wrel 4609 Fun wfun 5182 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 df-fn 5191 |
This theorem is referenced by: mpt0 5315 f0 5378 f00 5379 f0bi 5380 f1o00 5467 fo00 5468 tpos0 6242 ixp0x 6692 0fz1 9980 |
Copyright terms: Public domain | W3C validator |