ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0 GIF version

Theorem fn0 5198
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0 (𝐹 Fn ∅ ↔ 𝐹 = ∅)

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 5177 . . 3 (𝐹 Fn ∅ → Rel 𝐹)
2 fndm 5178 . . 3 (𝐹 Fn ∅ → dom 𝐹 = ∅)
3 reldm0 4715 . . . 4 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
43biimpar 293 . . 3 ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅)
51, 2, 4syl2anc 406 . 2 (𝐹 Fn ∅ → 𝐹 = ∅)
6 fun0 5137 . . . 4 Fun ∅
7 dm0 4711 . . . 4 dom ∅ = ∅
8 df-fn 5082 . . . 4 (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅))
96, 7, 8mpbir2an 907 . . 3 ∅ Fn ∅
10 fneq1 5167 . . 3 (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅))
119, 10mpbiri 167 . 2 (𝐹 = ∅ → 𝐹 Fn ∅)
125, 11impbii 125 1 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1312  c0 3327  dom cdm 4497  Rel wrel 4502  Fun wfun 5073   Fn wfn 5074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-fun 5081  df-fn 5082
This theorem is referenced by:  mpt0  5206  f0  5269  f00  5270  f0bi  5271  f1o00  5356  fo00  5357  tpos0  6123  ixp0x  6572  0fz1  9712
  Copyright terms: Public domain W3C validator