Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fn0 | GIF version |
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5267 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
2 | fndm 5268 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
3 | reldm0 4803 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
4 | 3 | biimpar 295 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
5 | 1, 2, 4 | syl2anc 409 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
6 | fun0 5227 | . . . 4 ⊢ Fun ∅ | |
7 | dm0 4799 | . . . 4 ⊢ dom ∅ = ∅ | |
8 | df-fn 5172 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
9 | 6, 7, 8 | mpbir2an 927 | . . 3 ⊢ ∅ Fn ∅ |
10 | fneq1 5257 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
11 | 9, 10 | mpbiri 167 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
12 | 5, 11 | impbii 125 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1335 ∅c0 3394 dom cdm 4585 Rel wrel 4590 Fun wfun 5163 Fn wfn 5164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-fun 5171 df-fn 5172 |
This theorem is referenced by: mpt0 5296 f0 5359 f00 5360 f0bi 5361 f1o00 5448 fo00 5449 tpos0 6218 ixp0x 6668 0fz1 9940 |
Copyright terms: Public domain | W3C validator |