ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0 GIF version

Theorem fn0 5380
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0 (𝐹 Fn ∅ ↔ 𝐹 = ∅)

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 5357 . . 3 (𝐹 Fn ∅ → Rel 𝐹)
2 fndm 5358 . . 3 (𝐹 Fn ∅ → dom 𝐹 = ∅)
3 reldm0 4885 . . . 4 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
43biimpar 297 . . 3 ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅)
51, 2, 4syl2anc 411 . 2 (𝐹 Fn ∅ → 𝐹 = ∅)
6 fun0 5317 . . . 4 Fun ∅
7 dm0 4881 . . . 4 dom ∅ = ∅
8 df-fn 5262 . . . 4 (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅))
96, 7, 8mpbir2an 944 . . 3 ∅ Fn ∅
10 fneq1 5347 . . 3 (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅))
119, 10mpbiri 168 . 2 (𝐹 = ∅ → 𝐹 Fn ∅)
125, 11impbii 126 1 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  c0 3451  dom cdm 4664  Rel wrel 4669  Fun wfun 5253   Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-fun 5261  df-fn 5262
This theorem is referenced by:  mpt0  5388  f0  5451  f00  5452  f0bi  5453  f1o00  5542  fo00  5543  tpos0  6341  ixp0x  6794  0fz1  10137
  Copyright terms: Public domain W3C validator