ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0 GIF version

Theorem fn0 5288
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0 (𝐹 Fn ∅ ↔ 𝐹 = ∅)

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 5267 . . 3 (𝐹 Fn ∅ → Rel 𝐹)
2 fndm 5268 . . 3 (𝐹 Fn ∅ → dom 𝐹 = ∅)
3 reldm0 4803 . . . 4 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
43biimpar 295 . . 3 ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅)
51, 2, 4syl2anc 409 . 2 (𝐹 Fn ∅ → 𝐹 = ∅)
6 fun0 5227 . . . 4 Fun ∅
7 dm0 4799 . . . 4 dom ∅ = ∅
8 df-fn 5172 . . . 4 (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅))
96, 7, 8mpbir2an 927 . . 3 ∅ Fn ∅
10 fneq1 5257 . . 3 (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅))
119, 10mpbiri 167 . 2 (𝐹 = ∅ → 𝐹 Fn ∅)
125, 11impbii 125 1 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1335  c0 3394  dom cdm 4585  Rel wrel 4590  Fun wfun 5163   Fn wfn 5164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-fun 5171  df-fn 5172
This theorem is referenced by:  mpt0  5296  f0  5359  f00  5360  f0bi  5361  f1o00  5448  fo00  5449  tpos0  6218  ixp0x  6668  0fz1  9940
  Copyright terms: Public domain W3C validator