| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fn0 | GIF version | ||
| Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5415 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
| 2 | fndm 5416 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
| 3 | reldm0 4938 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
| 4 | 3 | biimpar 297 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
| 5 | 1, 2, 4 | syl2anc 411 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
| 6 | fun0 5375 | . . . 4 ⊢ Fun ∅ | |
| 7 | dm0 4934 | . . . 4 ⊢ dom ∅ = ∅ | |
| 8 | df-fn 5317 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
| 9 | 6, 7, 8 | mpbir2an 948 | . . 3 ⊢ ∅ Fn ∅ |
| 10 | fneq1 5405 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
| 11 | 9, 10 | mpbiri 168 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
| 12 | 5, 11 | impbii 126 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∅c0 3491 dom cdm 4716 Rel wrel 4721 Fun wfun 5308 Fn wfn 5309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-fun 5316 df-fn 5317 |
| This theorem is referenced by: mpt0 5447 f0 5512 f00 5513 f0bi 5514 f1o00 5604 fo00 5605 tpos0 6410 ixp0x 6863 0fz1 10229 |
| Copyright terms: Public domain | W3C validator |