| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fn0 | GIF version | ||
| Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5357 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
| 2 | fndm 5358 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
| 3 | reldm0 4885 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
| 4 | 3 | biimpar 297 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
| 5 | 1, 2, 4 | syl2anc 411 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
| 6 | fun0 5317 | . . . 4 ⊢ Fun ∅ | |
| 7 | dm0 4881 | . . . 4 ⊢ dom ∅ = ∅ | |
| 8 | df-fn 5262 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
| 9 | 6, 7, 8 | mpbir2an 944 | . . 3 ⊢ ∅ Fn ∅ |
| 10 | fneq1 5347 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
| 11 | 9, 10 | mpbiri 168 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
| 12 | 5, 11 | impbii 126 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∅c0 3451 dom cdm 4664 Rel wrel 4669 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: mpt0 5388 f0 5451 f00 5452 f0bi 5453 f1o00 5542 fo00 5543 tpos0 6341 ixp0x 6794 0fz1 10137 |
| Copyright terms: Public domain | W3C validator |