| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fn0 | GIF version | ||
| Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5377 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
| 2 | fndm 5378 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
| 3 | reldm0 4901 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
| 4 | 3 | biimpar 297 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
| 5 | 1, 2, 4 | syl2anc 411 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
| 6 | fun0 5337 | . . . 4 ⊢ Fun ∅ | |
| 7 | dm0 4897 | . . . 4 ⊢ dom ∅ = ∅ | |
| 8 | df-fn 5279 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
| 9 | 6, 7, 8 | mpbir2an 945 | . . 3 ⊢ ∅ Fn ∅ |
| 10 | fneq1 5367 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
| 11 | 9, 10 | mpbiri 168 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
| 12 | 5, 11 | impbii 126 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∅c0 3461 dom cdm 4679 Rel wrel 4684 Fun wfun 5270 Fn wfn 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-fun 5278 df-fn 5279 |
| This theorem is referenced by: mpt0 5409 f0 5473 f00 5474 f0bi 5475 f1o00 5564 fo00 5565 tpos0 6367 ixp0x 6820 0fz1 10174 |
| Copyright terms: Public domain | W3C validator |