ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0 GIF version

Theorem fn0 5439
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0 (𝐹 Fn ∅ ↔ 𝐹 = ∅)

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 5415 . . 3 (𝐹 Fn ∅ → Rel 𝐹)
2 fndm 5416 . . 3 (𝐹 Fn ∅ → dom 𝐹 = ∅)
3 reldm0 4938 . . . 4 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
43biimpar 297 . . 3 ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅)
51, 2, 4syl2anc 411 . 2 (𝐹 Fn ∅ → 𝐹 = ∅)
6 fun0 5375 . . . 4 Fun ∅
7 dm0 4934 . . . 4 dom ∅ = ∅
8 df-fn 5317 . . . 4 (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅))
96, 7, 8mpbir2an 948 . . 3 ∅ Fn ∅
10 fneq1 5405 . . 3 (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅))
119, 10mpbiri 168 . 2 (𝐹 = ∅ → 𝐹 Fn ∅)
125, 11impbii 126 1 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  c0 3491  dom cdm 4716  Rel wrel 4721  Fun wfun 5308   Fn wfn 5309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-fun 5316  df-fn 5317
This theorem is referenced by:  mpt0  5447  f0  5512  f00  5513  f0bi  5514  f1o00  5604  fo00  5605  tpos0  6410  ixp0x  6863  0fz1  10229
  Copyright terms: Public domain W3C validator