| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basmexd | GIF version | ||
| Description: A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.) |
| Ref | Expression |
|---|---|
| basmexd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| basmexd.m | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| basmexd | ⊢ (𝜑 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12761 | . . . 4 ⊢ Base Fn V | |
| 2 | fnrel 5357 | . . . 4 ⊢ (Base Fn V → Rel Base) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel Base |
| 4 | basmexd.m | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 5 | basmexd.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 6 | 4, 5 | eleqtrd 2275 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) |
| 7 | relelfvdm 5593 | . . 3 ⊢ ((Rel Base ∧ 𝐴 ∈ (Base‘𝐺)) → 𝐺 ∈ dom Base) | |
| 8 | 3, 6, 7 | sylancr 414 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom Base) |
| 9 | 8 | elexd 2776 | 1 ⊢ (𝜑 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 dom cdm 4664 Rel wrel 4669 Fn wfn 5254 ‘cfv 5259 Basecbs 12703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 |
| This theorem is referenced by: gsumress 13097 grppropd 13219 grpsubval 13248 grpsubpropd2 13307 |
| Copyright terms: Public domain | W3C validator |