| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neiss2 | GIF version | ||
| Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.) |
| Ref | Expression |
|---|---|
| neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| neiss2 | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | neif 14688 | . . . . 5 ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) |
| 3 | fnrel 5381 | . . . . 5 ⊢ ((nei‘𝐽) Fn 𝒫 𝑋 → Rel (nei‘𝐽)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐽 ∈ Top → Rel (nei‘𝐽)) |
| 5 | relelfvdm 5621 | . . . 4 ⊢ ((Rel (nei‘𝐽) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽)) | |
| 6 | 4, 5 | sylan 283 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽)) |
| 7 | fndm 5382 | . . . . . 6 ⊢ ((nei‘𝐽) Fn 𝒫 𝑋 → dom (nei‘𝐽) = 𝒫 𝑋) | |
| 8 | 2, 7 | syl 14 | . . . . 5 ⊢ (𝐽 ∈ Top → dom (nei‘𝐽) = 𝒫 𝑋) |
| 9 | 8 | eleq2d 2276 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋)) |
| 10 | 9 | adantr 276 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋)) |
| 11 | 6, 10 | mpbid 147 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋) |
| 12 | 11 | elpwid 3632 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 𝒫 cpw 3621 ∪ cuni 3856 dom cdm 4683 Rel wrel 4688 Fn wfn 5275 ‘cfv 5280 Topctop 14544 neicnei 14685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-top 14545 df-nei 14686 |
| This theorem is referenced by: neii1 14694 neii2 14696 neiss 14697 ssnei2 14704 topssnei 14709 innei 14710 neitx 14815 |
| Copyright terms: Public domain | W3C validator |