ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiss2 GIF version

Theorem neiss2 14462
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neiss2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)

Proof of Theorem neiss2
StepHypRef Expression
1 neifval.1 . . . . . 6 𝑋 = 𝐽
21neif 14461 . . . . 5 (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋)
3 fnrel 5357 . . . . 5 ((nei‘𝐽) Fn 𝒫 𝑋 → Rel (nei‘𝐽))
42, 3syl 14 . . . 4 (𝐽 ∈ Top → Rel (nei‘𝐽))
5 relelfvdm 5593 . . . 4 ((Rel (nei‘𝐽) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽))
64, 5sylan 283 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽))
7 fndm 5358 . . . . . 6 ((nei‘𝐽) Fn 𝒫 𝑋 → dom (nei‘𝐽) = 𝒫 𝑋)
82, 7syl 14 . . . . 5 (𝐽 ∈ Top → dom (nei‘𝐽) = 𝒫 𝑋)
98eleq2d 2266 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋))
109adantr 276 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋))
116, 10mpbid 147 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋)
1211elpwid 3617 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wss 3157  𝒫 cpw 3606   cuni 3840  dom cdm 4664  Rel wrel 4669   Fn wfn 5254  cfv 5259  Topctop 14317  neicnei 14458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-top 14318  df-nei 14459
This theorem is referenced by:  neii1  14467  neii2  14469  neiss  14470  ssnei2  14477  topssnei  14482  innei  14483  neitx  14588
  Copyright terms: Public domain W3C validator