ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiss2 GIF version

Theorem neiss2 14689
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neiss2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)

Proof of Theorem neiss2
StepHypRef Expression
1 neifval.1 . . . . . 6 𝑋 = 𝐽
21neif 14688 . . . . 5 (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋)
3 fnrel 5381 . . . . 5 ((nei‘𝐽) Fn 𝒫 𝑋 → Rel (nei‘𝐽))
42, 3syl 14 . . . 4 (𝐽 ∈ Top → Rel (nei‘𝐽))
5 relelfvdm 5621 . . . 4 ((Rel (nei‘𝐽) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽))
64, 5sylan 283 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽))
7 fndm 5382 . . . . . 6 ((nei‘𝐽) Fn 𝒫 𝑋 → dom (nei‘𝐽) = 𝒫 𝑋)
82, 7syl 14 . . . . 5 (𝐽 ∈ Top → dom (nei‘𝐽) = 𝒫 𝑋)
98eleq2d 2276 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋))
109adantr 276 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋))
116, 10mpbid 147 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋)
1211elpwid 3632 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wss 3170  𝒫 cpw 3621   cuni 3856  dom cdm 4683  Rel wrel 4688   Fn wfn 5275  cfv 5280  Topctop 14544  neicnei 14685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-top 14545  df-nei 14686
This theorem is referenced by:  neii1  14694  neii2  14696  neiss  14697  ssnei2  14704  topssnei  14709  innei  14710  neitx  14815
  Copyright terms: Public domain W3C validator