Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neiss2 | GIF version |
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.) |
Ref | Expression |
---|---|
neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
neiss2 | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neifval.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | neif 12781 | . . . . 5 ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) |
3 | fnrel 5286 | . . . . 5 ⊢ ((nei‘𝐽) Fn 𝒫 𝑋 → Rel (nei‘𝐽)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐽 ∈ Top → Rel (nei‘𝐽)) |
5 | relelfvdm 5518 | . . . 4 ⊢ ((Rel (nei‘𝐽) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽)) | |
6 | 4, 5 | sylan 281 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽)) |
7 | fndm 5287 | . . . . . 6 ⊢ ((nei‘𝐽) Fn 𝒫 𝑋 → dom (nei‘𝐽) = 𝒫 𝑋) | |
8 | 2, 7 | syl 14 | . . . . 5 ⊢ (𝐽 ∈ Top → dom (nei‘𝐽) = 𝒫 𝑋) |
9 | 8 | eleq2d 2236 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋)) |
10 | 9 | adantr 274 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋)) |
11 | 6, 10 | mpbid 146 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋) |
12 | 11 | elpwid 3570 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 𝒫 cpw 3559 ∪ cuni 3789 dom cdm 4604 Rel wrel 4609 Fn wfn 5183 ‘cfv 5188 Topctop 12635 neicnei 12778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-top 12636 df-nei 12779 |
This theorem is referenced by: neii1 12787 neii2 12789 neiss 12790 ssnei2 12797 topssnei 12802 innei 12803 neitx 12908 |
Copyright terms: Public domain | W3C validator |