Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neiss2 | GIF version |
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.) |
Ref | Expression |
---|---|
neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
neiss2 | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neifval.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | neif 13221 | . . . . 5 ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) |
3 | fnrel 5306 | . . . . 5 ⊢ ((nei‘𝐽) Fn 𝒫 𝑋 → Rel (nei‘𝐽)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐽 ∈ Top → Rel (nei‘𝐽)) |
5 | relelfvdm 5539 | . . . 4 ⊢ ((Rel (nei‘𝐽) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽)) | |
6 | 4, 5 | sylan 283 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽)) |
7 | fndm 5307 | . . . . . 6 ⊢ ((nei‘𝐽) Fn 𝒫 𝑋 → dom (nei‘𝐽) = 𝒫 𝑋) | |
8 | 2, 7 | syl 14 | . . . . 5 ⊢ (𝐽 ∈ Top → dom (nei‘𝐽) = 𝒫 𝑋) |
9 | 8 | eleq2d 2245 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋)) |
10 | 9 | adantr 276 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋)) |
11 | 6, 10 | mpbid 147 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋) |
12 | 11 | elpwid 3583 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ⊆ wss 3127 𝒫 cpw 3572 ∪ cuni 3805 dom cdm 4620 Rel wrel 4625 Fn wfn 5203 ‘cfv 5208 Topctop 13075 neicnei 13218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-top 13076 df-nei 13219 |
This theorem is referenced by: neii1 13227 neii2 13229 neiss 13230 ssnei2 13237 topssnei 13242 innei 13243 neitx 13348 |
Copyright terms: Public domain | W3C validator |