| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basmex | GIF version | ||
| Description: A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.) |
| Ref | Expression |
|---|---|
| basmex.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| basmex | ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12934 | . . . 4 ⊢ Base Fn V | |
| 2 | fnrel 5377 | . . . 4 ⊢ (Base Fn V → Rel Base) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel Base |
| 4 | basmex.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 4 | eleq2i 2273 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝐺)) |
| 6 | 5 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝐺)) |
| 7 | relelfvdm 5615 | . . 3 ⊢ ((Rel Base ∧ 𝐴 ∈ (Base‘𝐺)) → 𝐺 ∈ dom Base) | |
| 8 | 3, 6, 7 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ dom Base) |
| 9 | 8 | elexd 2786 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 dom cdm 4679 Rel wrel 4684 Fn wfn 5271 ‘cfv 5276 Basecbs 12876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-inn 9044 df-ndx 12879 df-slot 12880 df-base 12882 |
| This theorem is referenced by: basm 12937 ismgmid 13253 ismnd 13295 dfgrp2e 13404 grpinvval 13419 grplactfval 13477 mulgval 13502 mulgnngsum 13507 mulgnn0gsum 13508 mulg1 13509 mulgnnp1 13510 rrgval 14068 islssm 14163 islidlm 14285 |
| Copyright terms: Public domain | W3C validator |