| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basmex | GIF version | ||
| Description: A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.) |
| Ref | Expression |
|---|---|
| basmex.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| basmex | ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 13057 | . . . 4 ⊢ Base Fn V | |
| 2 | fnrel 5395 | . . . 4 ⊢ (Base Fn V → Rel Base) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel Base |
| 4 | basmex.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 4 | eleq2i 2276 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝐺)) |
| 6 | 5 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝐺)) |
| 7 | relelfvdm 5635 | . . 3 ⊢ ((Rel Base ∧ 𝐴 ∈ (Base‘𝐺)) → 𝐺 ∈ dom Base) | |
| 8 | 3, 6, 7 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ dom Base) |
| 9 | 8 | elexd 2793 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 dom cdm 4696 Rel wrel 4701 Fn wfn 5289 ‘cfv 5294 Basecbs 12998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 |
| This theorem is referenced by: basm 13060 ismgmid 13376 ismnd 13418 dfgrp2e 13527 grpinvval 13542 grplactfval 13600 mulgval 13625 mulgnngsum 13630 mulgnn0gsum 13631 mulg1 13632 mulgnnp1 13633 rrgval 14191 islssm 14286 islidlm 14408 |
| Copyright terms: Public domain | W3C validator |