Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > basmex | GIF version |
Description: A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.) |
Ref | Expression |
---|---|
basmex.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
basmex | ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn 12477 | . . . 4 ⊢ Base Fn V | |
2 | fnrel 5298 | . . . 4 ⊢ (Base Fn V → Rel Base) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel Base |
4 | basmex.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 4 | eleq2i 2238 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝐺)) |
6 | 5 | biimpi 119 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝐺)) |
7 | relelfvdm 5531 | . . 3 ⊢ ((Rel Base ∧ 𝐴 ∈ (Base‘𝐺)) → 𝐺 ∈ dom Base) | |
8 | 3, 6, 7 | sylancr 412 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ dom Base) |
9 | 8 | elexd 2744 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1349 ∈ wcel 2142 Vcvv 2731 dom cdm 4612 Rel wrel 4617 Fn wfn 5195 ‘cfv 5200 Basecbs 12420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-v 2733 df-sbc 2957 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-iota 5162 df-fun 5202 df-fn 5203 df-fv 5208 df-inn 8883 df-ndx 12423 df-slot 12424 df-base 12426 |
This theorem is referenced by: ismgmid 12635 ismnd 12659 dfgrp2e 12737 grpinvval 12750 grplactfval 12804 mulgval 12819 mulg1 12823 mulgnnp1 12824 |
Copyright terms: Public domain | W3C validator |