Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismgmn0 | GIF version |
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn 12451 | . . . . . 6 ⊢ Base Fn V | |
2 | fnrel 5286 | . . . . . 6 ⊢ (Base Fn V → Rel Base) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Rel Base |
4 | relelfvdm 5518 | . . . . 5 ⊢ ((Rel Base ∧ 𝐴 ∈ (Base‘𝑀)) → 𝑀 ∈ dom Base) | |
5 | 3, 4 | mpan 421 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝑀) → 𝑀 ∈ dom Base) |
6 | ismgmn0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | 5, 6 | eleq2s 2261 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ dom Base) |
8 | 7 | elexd 2739 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
9 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
10 | 6, 9 | ismgm 12588 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
11 | 8, 10 | syl 14 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 dom cdm 4604 Rel wrel 4609 Fn wfn 5183 ‘cfv 5188 (class class class)co 5842 Basecbs 12394 +gcplusg 12457 Mgmcmgm 12585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-mgm 12587 |
This theorem is referenced by: mgm1 12601 opifismgmdc 12602 |
Copyright terms: Public domain | W3C validator |