| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismgmn0 | GIF version | ||
| Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12965 | . . . . . 6 ⊢ Base Fn V | |
| 2 | fnrel 5381 | . . . . . 6 ⊢ (Base Fn V → Rel Base) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Rel Base |
| 4 | relelfvdm 5621 | . . . . 5 ⊢ ((Rel Base ∧ 𝐴 ∈ (Base‘𝑀)) → 𝑀 ∈ dom Base) | |
| 5 | 3, 4 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝑀) → 𝑀 ∈ dom Base) |
| 6 | ismgmn0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 7 | 5, 6 | eleq2s 2301 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ dom Base) |
| 8 | 7 | elexd 2787 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
| 9 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
| 10 | 6, 9 | ismgm 13264 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 11 | 8, 10 | syl 14 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 dom cdm 4683 Rel wrel 4688 Fn wfn 5275 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 Mgmcmgm 13261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mgm 13263 |
| This theorem is referenced by: mgm1 13277 opifismgmdc 13278 issgrpn0 13312 |
| Copyright terms: Public domain | W3C validator |