| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismgmn0 | GIF version | ||
| Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12736 | . . . . . 6 ⊢ Base Fn V | |
| 2 | fnrel 5356 | . . . . . 6 ⊢ (Base Fn V → Rel Base) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Rel Base |
| 4 | relelfvdm 5590 | . . . . 5 ⊢ ((Rel Base ∧ 𝐴 ∈ (Base‘𝑀)) → 𝑀 ∈ dom Base) | |
| 5 | 3, 4 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝑀) → 𝑀 ∈ dom Base) |
| 6 | ismgmn0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 7 | 5, 6 | eleq2s 2291 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ dom Base) |
| 8 | 7 | elexd 2776 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
| 9 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
| 10 | 6, 9 | ismgm 13000 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 11 | 8, 10 | syl 14 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 dom cdm 4663 Rel wrel 4668 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Mgmcmgm 12997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mgm 12999 |
| This theorem is referenced by: mgm1 13013 opifismgmdc 13014 issgrpn0 13048 |
| Copyright terms: Public domain | W3C validator |