Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismgmn0 | GIF version |
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn 12473 | . . . . . 6 ⊢ Base Fn V | |
2 | fnrel 5296 | . . . . . 6 ⊢ (Base Fn V → Rel Base) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Rel Base |
4 | relelfvdm 5528 | . . . . 5 ⊢ ((Rel Base ∧ 𝐴 ∈ (Base‘𝑀)) → 𝑀 ∈ dom Base) | |
5 | 3, 4 | mpan 422 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝑀) → 𝑀 ∈ dom Base) |
6 | ismgmn0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | 5, 6 | eleq2s 2265 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ dom Base) |
8 | 7 | elexd 2743 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
9 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
10 | 6, 9 | ismgm 12611 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
11 | 8, 10 | syl 14 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 dom cdm 4611 Rel wrel 4616 Fn wfn 5193 ‘cfv 5198 (class class class)co 5853 Basecbs 12416 +gcplusg 12480 Mgmcmgm 12608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-mgm 12610 |
This theorem is referenced by: mgm1 12624 opifismgmdc 12625 issgrpn0 12646 |
Copyright terms: Public domain | W3C validator |