Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnexALT | GIF version |
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5282. This version of fnex 5718 uses ax-pow 4160 and ax-un 4418, whereas fnex 5718 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fnexALT | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5296 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | relssdmrn 5131 | . . . 4 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
4 | 3 | adantr 274 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
5 | fndm 5297 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 5 | eleq1d 2239 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
7 | 6 | biimpar 295 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
8 | fnfun 5295 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
9 | funimaexg 5282 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
10 | 8, 9 | sylan 281 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
11 | imadmrn 4963 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
12 | 5 | imaeq2d 4953 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
13 | 11, 12 | eqtr3id 2217 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹 “ 𝐴)) |
14 | 13 | eleq1d 2239 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹 “ 𝐴) ∈ V)) |
15 | 14 | biimpar 295 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐹 “ 𝐴) ∈ V) → ran 𝐹 ∈ V) |
16 | 10, 15 | syldan 280 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → ran 𝐹 ∈ V) |
17 | xpexg 4725 | . . 3 ⊢ ((dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V) | |
18 | 7, 16, 17 | syl2anc 409 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (dom 𝐹 × ran 𝐹) ∈ V) |
19 | ssexg 4128 | . 2 ⊢ ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V) | |
20 | 4, 18, 19 | syl2anc 409 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 × cxp 4609 dom cdm 4611 ran crn 4612 “ cima 4614 Rel wrel 4616 Fun wfun 5192 Fn wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |