| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnexALT | GIF version | ||
| Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5404. This version of fnex 5860 uses ax-pow 4257 and ax-un 4523, whereas fnex 5860 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fnexALT | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5418 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | relssdmrn 5248 | . . . 4 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 5 | fndm 5419 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | 5 | eleq1d 2298 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 7 | 6 | biimpar 297 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
| 8 | fnfun 5417 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 9 | funimaexg 5404 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
| 10 | 8, 9 | sylan 283 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
| 11 | imadmrn 5077 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 12 | 5 | imaeq2d 5067 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 13 | 11, 12 | eqtr3id 2276 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹 “ 𝐴)) |
| 14 | 13 | eleq1d 2298 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹 “ 𝐴) ∈ V)) |
| 15 | 14 | biimpar 297 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐹 “ 𝐴) ∈ V) → ran 𝐹 ∈ V) |
| 16 | 10, 15 | syldan 282 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → ran 𝐹 ∈ V) |
| 17 | xpexg 4832 | . . 3 ⊢ ((dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V) | |
| 18 | 7, 16, 17 | syl2anc 411 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (dom 𝐹 × ran 𝐹) ∈ V) |
| 19 | ssexg 4222 | . 2 ⊢ ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V) | |
| 20 | 4, 18, 19 | syl2anc 411 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 × cxp 4716 dom cdm 4718 ran crn 4719 “ cima 4721 Rel wrel 4723 Fun wfun 5311 Fn wfn 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |