Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnexALT | GIF version |
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5272. This version of fnex 5707 uses ax-pow 4153 and ax-un 4411, whereas fnex 5707 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fnexALT | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5286 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | relssdmrn 5124 | . . . 4 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
4 | 3 | adantr 274 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
5 | fndm 5287 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 5 | eleq1d 2235 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
7 | 6 | biimpar 295 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → dom 𝐹 ∈ 𝐵) |
8 | fnfun 5285 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
9 | funimaexg 5272 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
10 | 8, 9 | sylan 281 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
11 | imadmrn 4956 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
12 | 5 | imaeq2d 4946 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
13 | 11, 12 | eqtr3id 2213 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹 “ 𝐴)) |
14 | 13 | eleq1d 2235 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹 “ 𝐴) ∈ V)) |
15 | 14 | biimpar 295 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐹 “ 𝐴) ∈ V) → ran 𝐹 ∈ V) |
16 | 10, 15 | syldan 280 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → ran 𝐹 ∈ V) |
17 | xpexg 4718 | . . 3 ⊢ ((dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V) | |
18 | 7, 16, 17 | syl2anc 409 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → (dom 𝐹 × ran 𝐹) ∈ V) |
19 | ssexg 4121 | . 2 ⊢ ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V) | |
20 | 4, 18, 19 | syl2anc 409 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 × cxp 4602 dom cdm 4604 ran crn 4605 “ cima 4607 Rel wrel 4609 Fun wfun 5182 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |