ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnexALT GIF version

Theorem fnexALT 6254
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5404. This version of fnex 5860 uses ax-pow 4257 and ax-un 4523, whereas fnex 5860 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fnexALT ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 5418 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
2 relssdmrn 5248 . . . 4 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 14 . . 3 (𝐹 Fn 𝐴𝐹 ⊆ (dom 𝐹 × ran 𝐹))
43adantr 276 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹))
5 fndm 5419 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65eleq1d 2298 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵𝐴𝐵))
76biimpar 297 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
8 fnfun 5417 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
9 funimaexg 5404 . . . . 5 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ∈ V)
108, 9sylan 283 . . . 4 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐴) ∈ V)
11 imadmrn 5077 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
125imaeq2d 5067 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
1311, 12eqtr3id 2276 . . . . . 6 (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹𝐴))
1413eleq1d 2298 . . . . 5 (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹𝐴) ∈ V))
1514biimpar 297 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝐴) ∈ V) → ran 𝐹 ∈ V)
1610, 15syldan 282 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → ran 𝐹 ∈ V)
17 xpexg 4832 . . 3 ((dom 𝐹𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V)
187, 16, 17syl2anc 411 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (dom 𝐹 × ran 𝐹) ∈ V)
19 ssexg 4222 . 2 ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V)
204, 18, 19syl2anc 411 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  Vcvv 2799  wss 3197   × cxp 4716  dom cdm 4718  ran crn 4719  cima 4721  Rel wrel 4723  Fun wfun 5311   Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319  df-fn 5320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator