ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldrcl GIF version

Theorem cldrcl 12053
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cldrcl (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)

Proof of Theorem cldrcl
StepHypRef Expression
1 fncld 12049 . . . 4 Clsd Fn Top
2 fnrel 5157 . . . 4 (Clsd Fn Top → Rel Clsd)
31, 2ax-mp 7 . . 3 Rel Clsd
4 relelfvdm 5385 . . 3 ((Rel Clsd ∧ 𝐶 ∈ (Clsd‘𝐽)) → 𝐽 ∈ dom Clsd)
53, 4mpan 418 . 2 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd)
6 fndm 5158 . . 3 (Clsd Fn Top → dom Clsd = Top)
71, 6ax-mp 7 . 2 dom Clsd = Top
85, 7syl6eleq 2192 1 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wcel 1448  dom cdm 4477  Rel wrel 4482   Fn wfn 5054  cfv 5059  Topctop 11946  Clsdccld 12043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fn 5062  df-fv 5067  df-cld 12046
This theorem is referenced by:  cldss  12056  cldopn  12058  difopn  12059  uncld  12064  cldcls  12065  clsss2  12080
  Copyright terms: Public domain W3C validator