ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldrcl GIF version

Theorem cldrcl 14545
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cldrcl (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)

Proof of Theorem cldrcl
StepHypRef Expression
1 fncld 14541 . . . 4 Clsd Fn Top
2 fnrel 5371 . . . 4 (Clsd Fn Top → Rel Clsd)
31, 2ax-mp 5 . . 3 Rel Clsd
4 relelfvdm 5607 . . 3 ((Rel Clsd ∧ 𝐶 ∈ (Clsd‘𝐽)) → 𝐽 ∈ dom Clsd)
53, 4mpan 424 . 2 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd)
6 fndm 5372 . . 3 (Clsd Fn Top → dom Clsd = Top)
71, 6ax-mp 5 . 2 dom Clsd = Top
85, 7eleqtrdi 2297 1 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  dom cdm 4674  Rel wrel 4679   Fn wfn 5265  cfv 5270  Topctop 14440  Clsdccld 14535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-cld 14538
This theorem is referenced by:  cldss  14548  cldopn  14550  difopn  14551  uncld  14556  cldcls  14557  clsss2  14572
  Copyright terms: Public domain W3C validator