ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldrcl GIF version

Theorem cldrcl 12742
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cldrcl (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)

Proof of Theorem cldrcl
StepHypRef Expression
1 fncld 12738 . . . 4 Clsd Fn Top
2 fnrel 5286 . . . 4 (Clsd Fn Top → Rel Clsd)
31, 2ax-mp 5 . . 3 Rel Clsd
4 relelfvdm 5518 . . 3 ((Rel Clsd ∧ 𝐶 ∈ (Clsd‘𝐽)) → 𝐽 ∈ dom Clsd)
53, 4mpan 421 . 2 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd)
6 fndm 5287 . . 3 (Clsd Fn Top → dom Clsd = Top)
71, 6ax-mp 5 . 2 dom Clsd = Top
85, 7eleqtrdi 2259 1 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  dom cdm 4604  Rel wrel 4609   Fn wfn 5183  cfv 5188  Topctop 12635  Clsdccld 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-cld 12735
This theorem is referenced by:  cldss  12745  cldopn  12747  difopn  12748  uncld  12753  cldcls  12754  clsss2  12769
  Copyright terms: Public domain W3C validator