| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cldrcl | GIF version | ||
| Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| cldrcl | ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fncld 14541 | . . . 4 ⊢ Clsd Fn Top | |
| 2 | fnrel 5371 | . . . 4 ⊢ (Clsd Fn Top → Rel Clsd) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel Clsd |
| 4 | relelfvdm 5607 | . . 3 ⊢ ((Rel Clsd ∧ 𝐶 ∈ (Clsd‘𝐽)) → 𝐽 ∈ dom Clsd) | |
| 5 | 3, 4 | mpan 424 | . 2 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd) |
| 6 | fndm 5372 | . . 3 ⊢ (Clsd Fn Top → dom Clsd = Top) | |
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ dom Clsd = Top |
| 8 | 5, 7 | eleqtrdi 2297 | 1 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 dom cdm 4674 Rel wrel 4679 Fn wfn 5265 ‘cfv 5270 Topctop 14440 Clsdccld 14535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-cld 14538 |
| This theorem is referenced by: cldss 14548 cldopn 14550 difopn 14551 uncld 14556 cldcls 14557 clsss2 14572 |
| Copyright terms: Public domain | W3C validator |