| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cldrcl | GIF version | ||
| Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| cldrcl | ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fncld 14772 | . . . 4 ⊢ Clsd Fn Top | |
| 2 | fnrel 5419 | . . . 4 ⊢ (Clsd Fn Top → Rel Clsd) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel Clsd |
| 4 | relelfvdm 5659 | . . 3 ⊢ ((Rel Clsd ∧ 𝐶 ∈ (Clsd‘𝐽)) → 𝐽 ∈ dom Clsd) | |
| 5 | 3, 4 | mpan 424 | . 2 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd) |
| 6 | fndm 5420 | . . 3 ⊢ (Clsd Fn Top → dom Clsd = Top) | |
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ dom Clsd = Top |
| 8 | 5, 7 | eleqtrdi 2322 | 1 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 dom cdm 4719 Rel wrel 4724 Fn wfn 5313 ‘cfv 5318 Topctop 14671 Clsdccld 14766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-cld 14769 |
| This theorem is referenced by: cldss 14779 cldopn 14781 difopn 14782 uncld 14787 cldcls 14788 clsss2 14803 |
| Copyright terms: Public domain | W3C validator |