Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cldrcl | GIF version |
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
cldrcl | ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncld 12738 | . . . 4 ⊢ Clsd Fn Top | |
2 | fnrel 5286 | . . . 4 ⊢ (Clsd Fn Top → Rel Clsd) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Rel Clsd |
4 | relelfvdm 5518 | . . 3 ⊢ ((Rel Clsd ∧ 𝐶 ∈ (Clsd‘𝐽)) → 𝐽 ∈ dom Clsd) | |
5 | 3, 4 | mpan 421 | . 2 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd) |
6 | fndm 5287 | . . 3 ⊢ (Clsd Fn Top → dom Clsd = Top) | |
7 | 1, 6 | ax-mp 5 | . 2 ⊢ dom Clsd = Top |
8 | 5, 7 | eleqtrdi 2259 | 1 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 dom cdm 4604 Rel wrel 4609 Fn wfn 5183 ‘cfv 5188 Topctop 12635 Clsdccld 12732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-cld 12735 |
This theorem is referenced by: cldss 12745 cldopn 12747 difopn 12748 uncld 12753 cldcls 12754 clsss2 12769 |
Copyright terms: Public domain | W3C validator |