![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cldrcl | GIF version |
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
cldrcl | ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncld 12049 | . . . 4 ⊢ Clsd Fn Top | |
2 | fnrel 5157 | . . . 4 ⊢ (Clsd Fn Top → Rel Clsd) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ Rel Clsd |
4 | relelfvdm 5385 | . . 3 ⊢ ((Rel Clsd ∧ 𝐶 ∈ (Clsd‘𝐽)) → 𝐽 ∈ dom Clsd) | |
5 | 3, 4 | mpan 418 | . 2 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd) |
6 | fndm 5158 | . . 3 ⊢ (Clsd Fn Top → dom Clsd = Top) | |
7 | 1, 6 | ax-mp 7 | . 2 ⊢ dom Clsd = Top |
8 | 5, 7 | syl6eleq 2192 | 1 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 dom cdm 4477 Rel wrel 4482 Fn wfn 5054 ‘cfv 5059 Topctop 11946 Clsdccld 12043 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fn 5062 df-fv 5067 df-cld 12046 |
This theorem is referenced by: cldss 12056 cldopn 12058 difopn 12059 uncld 12064 cldcls 12065 clsss2 12080 |
Copyright terms: Public domain | W3C validator |