ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps GIF version

Theorem istps 14376
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))

Proof of Theorem istps
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-topsp 14375 . . 3 TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
21eleq2i 2263 . 2 (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))})
3 topontop 14358 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
4 topnfn 12948 . . . . . . 7 TopOpen Fn V
5 fnrel 5357 . . . . . . 7 (TopOpen Fn V → Rel TopOpen)
64, 5ax-mp 5 . . . . . 6 Rel TopOpen
7 0opn 14350 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
8 istps.j . . . . . . 7 𝐽 = (TopOpen‘𝐾)
97, 8eleqtrdi 2289 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ (TopOpen‘𝐾))
10 relelfvdm 5593 . . . . . 6 ((Rel TopOpen ∧ ∅ ∈ (TopOpen‘𝐾)) → 𝐾 ∈ dom TopOpen)
116, 9, 10sylancr 414 . . . . 5 (𝐽 ∈ Top → 𝐾 ∈ dom TopOpen)
1211elexd 2776 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ V)
133, 12syl 14 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V)
14 fveq2 5561 . . . . 5 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
1514, 8eqtr4di 2247 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
16 fveq2 5561 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
17 istps.a . . . . . 6 𝐴 = (Base‘𝐾)
1816, 17eqtr4di 2247 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴)
1918fveq2d 5565 . . . 4 (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴))
2015, 19eleq12d 2267 . . 3 (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴)))
2113, 20elab3 2916 . 2 (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴))
222, 21bitri 184 1 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  {cab 2182  Vcvv 2763  c0 3451  dom cdm 4664  Rel wrel 4669   Fn wfn 5254  cfv 5259  Basecbs 12705  TopOpenctopn 12944  Topctop 14341  TopOnctopon 14354  TopSpctps 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-ndx 12708  df-slot 12709  df-base 12711  df-tset 12801  df-rest 12945  df-topn 12946  df-top 14342  df-topon 14355  df-topsp 14375
This theorem is referenced by:  istps2  14377  tpspropd  14380  tsettps  14382  isxms2  14796  cnfldtopon  14884
  Copyright terms: Public domain W3C validator