ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps GIF version

Theorem istps 14211
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))

Proof of Theorem istps
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-topsp 14210 . . 3 TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
21eleq2i 2260 . 2 (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))})
3 topontop 14193 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
4 topnfn 12858 . . . . . . 7 TopOpen Fn V
5 fnrel 5353 . . . . . . 7 (TopOpen Fn V → Rel TopOpen)
64, 5ax-mp 5 . . . . . 6 Rel TopOpen
7 0opn 14185 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
8 istps.j . . . . . . 7 𝐽 = (TopOpen‘𝐾)
97, 8eleqtrdi 2286 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ (TopOpen‘𝐾))
10 relelfvdm 5587 . . . . . 6 ((Rel TopOpen ∧ ∅ ∈ (TopOpen‘𝐾)) → 𝐾 ∈ dom TopOpen)
116, 9, 10sylancr 414 . . . . 5 (𝐽 ∈ Top → 𝐾 ∈ dom TopOpen)
1211elexd 2773 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ V)
133, 12syl 14 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V)
14 fveq2 5555 . . . . 5 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
1514, 8eqtr4di 2244 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
16 fveq2 5555 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
17 istps.a . . . . . 6 𝐴 = (Base‘𝐾)
1816, 17eqtr4di 2244 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴)
1918fveq2d 5559 . . . 4 (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴))
2015, 19eleq12d 2264 . . 3 (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴)))
2113, 20elab3 2913 . 2 (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴))
222, 21bitri 184 1 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2164  {cab 2179  Vcvv 2760  c0 3447  dom cdm 4660  Rel wrel 4665   Fn wfn 5250  cfv 5255  Basecbs 12621  TopOpenctopn 12854  Topctop 14176  TopOnctopon 14189  TopSpctps 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-ndx 12624  df-slot 12625  df-base 12627  df-tset 12717  df-rest 12855  df-topn 12856  df-top 14177  df-topon 14190  df-topsp 14210
This theorem is referenced by:  istps2  14212  tpspropd  14215  tsettps  14217  isxms2  14631  cnfldtopon  14719
  Copyright terms: Public domain W3C validator