ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps GIF version

Theorem istps 14554
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))

Proof of Theorem istps
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-topsp 14553 . . 3 TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
21eleq2i 2273 . 2 (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))})
3 topontop 14536 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
4 topnfn 13126 . . . . . . 7 TopOpen Fn V
5 fnrel 5378 . . . . . . 7 (TopOpen Fn V → Rel TopOpen)
64, 5ax-mp 5 . . . . . 6 Rel TopOpen
7 0opn 14528 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
8 istps.j . . . . . . 7 𝐽 = (TopOpen‘𝐾)
97, 8eleqtrdi 2299 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ (TopOpen‘𝐾))
10 relelfvdm 5618 . . . . . 6 ((Rel TopOpen ∧ ∅ ∈ (TopOpen‘𝐾)) → 𝐾 ∈ dom TopOpen)
116, 9, 10sylancr 414 . . . . 5 (𝐽 ∈ Top → 𝐾 ∈ dom TopOpen)
1211elexd 2787 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ V)
133, 12syl 14 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V)
14 fveq2 5586 . . . . 5 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
1514, 8eqtr4di 2257 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
16 fveq2 5586 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
17 istps.a . . . . . 6 𝐴 = (Base‘𝐾)
1816, 17eqtr4di 2257 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴)
1918fveq2d 5590 . . . 4 (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴))
2015, 19eleq12d 2277 . . 3 (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴)))
2113, 20elab3 2927 . 2 (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴))
222, 21bitri 184 1 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  c0 3462  dom cdm 4680  Rel wrel 4685   Fn wfn 5272  cfv 5277  Basecbs 12882  TopOpenctopn 13122  Topctop 14519  TopOnctopon 14532  TopSpctps 14552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-ndx 12885  df-slot 12886  df-base 12888  df-tset 12978  df-rest 13123  df-topn 13124  df-top 14520  df-topon 14533  df-topsp 14553
This theorem is referenced by:  istps2  14555  tpspropd  14558  tsettps  14560  isxms2  14974  cnfldtopon  15062
  Copyright terms: Public domain W3C validator