| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > istps | GIF version | ||
| Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istps.a | ⊢ 𝐴 = (Base‘𝐾) |
| istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topsp 14713 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
| 3 | topontop 14696 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 4 | topnfn 13285 | . . . . . . 7 ⊢ TopOpen Fn V | |
| 5 | fnrel 5419 | . . . . . . 7 ⊢ (TopOpen Fn V → Rel TopOpen) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ Rel TopOpen |
| 7 | 0opn 14688 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 8 | istps.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 9 | 7, 8 | eleqtrdi 2322 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ (TopOpen‘𝐾)) |
| 10 | relelfvdm 5661 | . . . . . 6 ⊢ ((Rel TopOpen ∧ ∅ ∈ (TopOpen‘𝐾)) → 𝐾 ∈ dom TopOpen) | |
| 11 | 6, 9, 10 | sylancr 414 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐾 ∈ dom TopOpen) |
| 12 | 11 | elexd 2813 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
| 13 | 3, 12 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
| 14 | fveq2 5629 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 15 | 14, 8 | eqtr4di 2280 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 16 | fveq2 5629 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 17 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
| 18 | 16, 17 | eqtr4di 2280 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
| 19 | 18 | fveq2d 5633 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
| 20 | 15, 19 | eleq12d 2300 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
| 21 | 13, 20 | elab3 2955 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| 22 | 2, 21 | bitri 184 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 ∅c0 3491 dom cdm 4719 Rel wrel 4724 Fn wfn 5313 ‘cfv 5318 Basecbs 13040 TopOpenctopn 13281 Topctop 14679 TopOnctopon 14692 TopSpctps 14712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-ndx 13043 df-slot 13044 df-base 13046 df-tset 13137 df-rest 13282 df-topn 13283 df-top 14680 df-topon 14693 df-topsp 14713 |
| This theorem is referenced by: istps2 14715 tpspropd 14718 tsettps 14720 isxms2 15134 cnfldtopon 15222 |
| Copyright terms: Public domain | W3C validator |