| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > istps | GIF version | ||
| Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istps.a | ⊢ 𝐴 = (Base‘𝐾) |
| istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topsp 14351 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
| 3 | topontop 14334 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 4 | topnfn 12946 | . . . . . . 7 ⊢ TopOpen Fn V | |
| 5 | fnrel 5357 | . . . . . . 7 ⊢ (TopOpen Fn V → Rel TopOpen) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ Rel TopOpen |
| 7 | 0opn 14326 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 8 | istps.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 9 | 7, 8 | eleqtrdi 2289 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ (TopOpen‘𝐾)) |
| 10 | relelfvdm 5593 | . . . . . 6 ⊢ ((Rel TopOpen ∧ ∅ ∈ (TopOpen‘𝐾)) → 𝐾 ∈ dom TopOpen) | |
| 11 | 6, 9, 10 | sylancr 414 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐾 ∈ dom TopOpen) |
| 12 | 11 | elexd 2776 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
| 13 | 3, 12 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
| 14 | fveq2 5561 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 15 | 14, 8 | eqtr4di 2247 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 16 | fveq2 5561 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 17 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
| 18 | 16, 17 | eqtr4di 2247 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
| 19 | 18 | fveq2d 5565 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
| 20 | 15, 19 | eleq12d 2267 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
| 21 | 13, 20 | elab3 2916 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| 22 | 2, 21 | bitri 184 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∅c0 3451 dom cdm 4664 Rel wrel 4669 Fn wfn 5254 ‘cfv 5259 Basecbs 12703 TopOpenctopn 12942 Topctop 14317 TopOnctopon 14330 TopSpctps 14350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-ndx 12706 df-slot 12707 df-base 12709 df-tset 12799 df-rest 12943 df-topn 12944 df-top 14318 df-topon 14331 df-topsp 14351 |
| This theorem is referenced by: istps2 14353 tpspropd 14356 tsettps 14358 isxms2 14772 cnfldtopon 14860 |
| Copyright terms: Public domain | W3C validator |