| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > istps | GIF version | ||
| Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| istps.a | ⊢ 𝐴 = (Base‘𝐾) | 
| istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) | 
| Ref | Expression | 
|---|---|
| istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-topsp 14267 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) | 
| 3 | topontop 14250 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 4 | topnfn 12915 | . . . . . . 7 ⊢ TopOpen Fn V | |
| 5 | fnrel 5356 | . . . . . . 7 ⊢ (TopOpen Fn V → Rel TopOpen) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ Rel TopOpen | 
| 7 | 0opn 14242 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 8 | istps.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 9 | 7, 8 | eleqtrdi 2289 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ (TopOpen‘𝐾)) | 
| 10 | relelfvdm 5590 | . . . . . 6 ⊢ ((Rel TopOpen ∧ ∅ ∈ (TopOpen‘𝐾)) → 𝐾 ∈ dom TopOpen) | |
| 11 | 6, 9, 10 | sylancr 414 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐾 ∈ dom TopOpen) | 
| 12 | 11 | elexd 2776 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) | 
| 13 | 3, 12 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) | 
| 14 | fveq2 5558 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 15 | 14, 8 | eqtr4di 2247 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) | 
| 16 | fveq2 5558 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 17 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
| 18 | 16, 17 | eqtr4di 2247 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) | 
| 19 | 18 | fveq2d 5562 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) | 
| 20 | 15, 19 | eleq12d 2267 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) | 
| 21 | 13, 20 | elab3 2916 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) | 
| 22 | 2, 21 | bitri 184 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∅c0 3450 dom cdm 4663 Rel wrel 4668 Fn wfn 5253 ‘cfv 5258 Basecbs 12678 TopOpenctopn 12911 Topctop 14233 TopOnctopon 14246 TopSpctps 14266 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-ndx 12681 df-slot 12682 df-base 12684 df-tset 12774 df-rest 12912 df-topn 12913 df-top 14234 df-topon 14247 df-topsp 14267 | 
| This theorem is referenced by: istps2 14269 tpspropd 14272 tsettps 14274 isxms2 14688 cnfldtopon 14776 | 
| Copyright terms: Public domain | W3C validator |