![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > istps | GIF version |
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istps.a | ⊢ 𝐴 = (Base‘𝐾) |
istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topsp 13616 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
3 | topontop 13599 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
4 | topnfn 12698 | . . . . . . 7 ⊢ TopOpen Fn V | |
5 | fnrel 5316 | . . . . . . 7 ⊢ (TopOpen Fn V → Rel TopOpen) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ Rel TopOpen |
7 | 0opn 13591 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
8 | istps.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐾) | |
9 | 7, 8 | eleqtrdi 2270 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∅ ∈ (TopOpen‘𝐾)) |
10 | relelfvdm 5549 | . . . . . 6 ⊢ ((Rel TopOpen ∧ ∅ ∈ (TopOpen‘𝐾)) → 𝐾 ∈ dom TopOpen) | |
11 | 6, 9, 10 | sylancr 414 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐾 ∈ dom TopOpen) |
12 | 11 | elexd 2752 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
13 | 3, 12 | syl 14 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
14 | fveq2 5517 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
15 | 14, 8 | eqtr4di 2228 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
16 | fveq2 5517 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
17 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
18 | 16, 17 | eqtr4di 2228 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
19 | 18 | fveq2d 5521 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
20 | 15, 19 | eleq12d 2248 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
21 | 13, 20 | elab3 2891 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
22 | 2, 21 | bitri 184 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cab 2163 Vcvv 2739 ∅c0 3424 dom cdm 4628 Rel wrel 4633 Fn wfn 5213 ‘cfv 5218 Basecbs 12464 TopOpenctopn 12694 Topctop 13582 TopOnctopon 13595 TopSpctps 13615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-ndx 12467 df-slot 12468 df-base 12470 df-tset 12557 df-rest 12695 df-topn 12696 df-top 13583 df-topon 13596 df-topsp 13616 |
This theorem is referenced by: istps2 13618 tpspropd 13621 tsettps 13623 isxms2 14037 |
Copyright terms: Public domain | W3C validator |