ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps GIF version

Theorem istps 14268
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))

Proof of Theorem istps
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-topsp 14267 . . 3 TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
21eleq2i 2263 . 2 (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))})
3 topontop 14250 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
4 topnfn 12915 . . . . . . 7 TopOpen Fn V
5 fnrel 5356 . . . . . . 7 (TopOpen Fn V → Rel TopOpen)
64, 5ax-mp 5 . . . . . 6 Rel TopOpen
7 0opn 14242 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
8 istps.j . . . . . . 7 𝐽 = (TopOpen‘𝐾)
97, 8eleqtrdi 2289 . . . . . 6 (𝐽 ∈ Top → ∅ ∈ (TopOpen‘𝐾))
10 relelfvdm 5590 . . . . . 6 ((Rel TopOpen ∧ ∅ ∈ (TopOpen‘𝐾)) → 𝐾 ∈ dom TopOpen)
116, 9, 10sylancr 414 . . . . 5 (𝐽 ∈ Top → 𝐾 ∈ dom TopOpen)
1211elexd 2776 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ V)
133, 12syl 14 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V)
14 fveq2 5558 . . . . 5 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
1514, 8eqtr4di 2247 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
16 fveq2 5558 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
17 istps.a . . . . . 6 𝐴 = (Base‘𝐾)
1816, 17eqtr4di 2247 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴)
1918fveq2d 5562 . . . 4 (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴))
2015, 19eleq12d 2267 . . 3 (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴)))
2113, 20elab3 2916 . 2 (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴))
222, 21bitri 184 1 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  {cab 2182  Vcvv 2763  c0 3450  dom cdm 4663  Rel wrel 4668   Fn wfn 5253  cfv 5258  Basecbs 12678  TopOpenctopn 12911  Topctop 14233  TopOnctopon 14246  TopSpctps 14266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-ndx 12681  df-slot 12682  df-base 12684  df-tset 12774  df-rest 12912  df-topn 12913  df-top 14234  df-topon 14247  df-topsp 14267
This theorem is referenced by:  istps2  14269  tpspropd  14272  tsettps  14274  isxms2  14688  cnfldtopon  14776
  Copyright terms: Public domain W3C validator