![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fofn | GIF version |
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5476 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5403 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5249 ⟶wf 5250 –onto→wfo 5252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-f 5258 df-fo 5260 |
This theorem is referenced by: fodmrnu 5484 foun 5519 fo00 5536 foelcdmi 5609 foima2 5794 cbvfo 5828 cbvexfo 5829 foeqcnvco 5833 canth 5871 1stcof 6216 2ndcof 6217 1stexg 6220 2ndexg 6221 df1st2 6272 df2nd2 6273 1stconst 6274 2ndconst 6275 fidcenumlemrks 7012 fidcenumlemr 7014 ctm 7168 suplocexprlemell 7773 ennnfonelemhf1o 12570 ennnfonelemrn 12576 imasaddfnlemg 12897 imasgrp2 13180 imasrng 13452 imasring 13560 znf1o 14139 upxp 14440 uptx 14442 cnmpt1st 14456 cnmpt2nd 14457 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |