| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fofn | GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5547 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5472 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5312 ⟶wf 5313 –onto→wfo 5315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5321 df-fo 5323 |
| This theorem is referenced by: fodmrnu 5555 foun 5590 fo00 5608 foelcdmi 5685 foima2 5874 cbvfo 5908 cbvexfo 5909 foeqcnvco 5913 canth 5951 1stcof 6307 2ndcof 6308 1stexg 6311 2ndexg 6312 df1st2 6363 df2nd2 6364 1stconst 6365 2ndconst 6366 fidcenumlemrks 7116 fidcenumlemr 7118 ctm 7272 suplocexprlemell 7896 ennnfonelemhf1o 12979 ennnfonelemrn 12985 imasaddfnlemg 13342 imasmnd2 13480 imasgrp2 13642 imasrng 13914 imasring 14022 znf1o 14609 upxp 14940 uptx 14942 cnmpt1st 14956 cnmpt2nd 14957 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |