| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fofn | GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5483 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5410 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5254 ⟶wf 5255 –onto→wfo 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 df-fo 5265 |
| This theorem is referenced by: fodmrnu 5491 foun 5526 fo00 5543 foelcdmi 5616 foima2 5801 cbvfo 5835 cbvexfo 5836 foeqcnvco 5840 canth 5878 1stcof 6230 2ndcof 6231 1stexg 6234 2ndexg 6235 df1st2 6286 df2nd2 6287 1stconst 6288 2ndconst 6289 fidcenumlemrks 7028 fidcenumlemr 7030 ctm 7184 suplocexprlemell 7797 ennnfonelemhf1o 12655 ennnfonelemrn 12661 imasaddfnlemg 13016 imasmnd2 13154 imasgrp2 13316 imasrng 13588 imasring 13696 znf1o 14283 upxp 14592 uptx 14594 cnmpt1st 14608 cnmpt2nd 14609 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |