Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fofn | GIF version |
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5420 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5347 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5193 ⟶wf 5194 –onto→wfo 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5202 df-fo 5204 |
This theorem is referenced by: fodmrnu 5428 foun 5461 fo00 5478 foima2 5731 cbvfo 5764 cbvexfo 5765 foeqcnvco 5769 canth 5807 1stcof 6142 2ndcof 6143 1stexg 6146 2ndexg 6147 df1st2 6198 df2nd2 6199 1stconst 6200 2ndconst 6201 fidcenumlemrks 6930 fidcenumlemr 6932 ctm 7086 suplocexprlemell 7675 ennnfonelemhf1o 12368 ennnfonelemrn 12374 upxp 13066 uptx 13068 cnmpt1st 13082 cnmpt2nd 13083 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |