| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fofn | GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5509 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5434 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5274 ⟶wf 5275 –onto→wfo 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 df-f 5283 df-fo 5285 |
| This theorem is referenced by: fodmrnu 5517 foun 5552 fo00 5570 foelcdmi 5643 foima2 5832 cbvfo 5866 cbvexfo 5867 foeqcnvco 5871 canth 5909 1stcof 6261 2ndcof 6262 1stexg 6265 2ndexg 6266 df1st2 6317 df2nd2 6318 1stconst 6319 2ndconst 6320 fidcenumlemrks 7069 fidcenumlemr 7071 ctm 7225 suplocexprlemell 7841 ennnfonelemhf1o 12854 ennnfonelemrn 12860 imasaddfnlemg 13216 imasmnd2 13354 imasgrp2 13516 imasrng 13788 imasring 13896 znf1o 14483 upxp 14814 uptx 14816 cnmpt1st 14830 cnmpt2nd 14831 pw1nct 16075 |
| Copyright terms: Public domain | W3C validator |