ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofn GIF version

Theorem fofn 5248
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.)
Assertion
Ref Expression
fofn (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)

Proof of Theorem fofn
StepHypRef Expression
1 fof 5246 . 2 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 ffn 5174 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5023  wf 5024  ontowfo 5026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-in 3006  df-ss 3013  df-f 5032  df-fo 5034
This theorem is referenced by:  fodmrnu  5254  foun  5285  fo00  5302  foima2  5544  cbvfo  5578  cbvexfo  5579  foeqcnvco  5583  1stcof  5948  2ndcof  5949  1stexg  5952  2ndexg  5953  df1st2  5998  df2nd2  5999  1stconst  6000  2ndconst  6001  fidcenumlemrks  6716  fidcenumlemr  6718  ctm  6845
  Copyright terms: Public domain W3C validator