Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fofn | GIF version |
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5410 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5337 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5183 ⟶wf 5184 –onto→wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-f 5192 df-fo 5194 |
This theorem is referenced by: fodmrnu 5418 foun 5451 fo00 5468 foima2 5720 cbvfo 5753 cbvexfo 5754 foeqcnvco 5758 canth 5796 1stcof 6131 2ndcof 6132 1stexg 6135 2ndexg 6136 df1st2 6187 df2nd2 6188 1stconst 6189 2ndconst 6190 fidcenumlemrks 6918 fidcenumlemr 6920 ctm 7074 suplocexprlemell 7654 ennnfonelemhf1o 12346 ennnfonelemrn 12352 upxp 12912 uptx 12914 cnmpt1st 12928 cnmpt2nd 12929 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |