Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifeq1d | GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq1 3529 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ifcif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-if 3527 |
This theorem is referenced by: ifeq12d 3545 ifbieq1d 3548 ifeq1dadc 3556 iseqf1olemjpcl 10451 iseqf1olemqpcl 10452 iseqf1olemfvp 10453 seq3f1olemqsum 10456 seq3f1olemp 10458 summodc 11346 fsum3 11350 fsum3ser 11360 isumlessdc 11459 prodeq2w 11519 prodmodc 11541 fprodseq 11546 prodssdc 11552 lgsval 13699 |
Copyright terms: Public domain | W3C validator |