ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1d GIF version

Theorem ifeq1d 3587
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
Hypothesis
Ref Expression
ifeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1d (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1d
StepHypRef Expression
1 ifeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ifeq1 3573 . 2 (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
31, 2syl 14 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  ifcif 3570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492  df-v 2773  df-un 3169  df-if 3571
This theorem is referenced by:  ifeq12d  3589  ifbieq1d  3592  ifeq1dadc  3600  iseqf1olemjpcl  10634  iseqf1olemqpcl  10635  iseqf1olemfvp  10636  seq3f1olemqsum  10639  seq3f1olemp  10641  summodc  11613  fsum3  11617  fsum3ser  11627  isumlessdc  11726  prodeq2w  11786  prodmodc  11808  fprodseq  11813  prodssdc  11819  subgmulg  13442  lgsval  15399
  Copyright terms: Public domain W3C validator