ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1d GIF version

Theorem ifeq1d 3620
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
Hypothesis
Ref Expression
ifeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1d (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1d
StepHypRef Expression
1 ifeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ifeq1 3605 . 2 (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
31, 2syl 14 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-if 3603
This theorem is referenced by:  ifeq12d  3622  ifbieq1d  3625  ifeq1dadc  3633  iseqf1olemjpcl  10725  iseqf1olemqpcl  10726  iseqf1olemfvp  10727  seq3f1olemqsum  10730  seq3f1olemp  10732  summodc  11889  fsum3  11893  fsum3ser  11903  isumlessdc  12002  prodeq2w  12062  prodmodc  12084  fprodseq  12089  prodssdc  12095  subgmulg  13720  lgsval  15677
  Copyright terms: Public domain W3C validator