ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddmnf1 GIF version

Theorem xaddmnf1 9861
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)

Proof of Theorem xaddmnf1
StepHypRef Expression
1 mnfxr 8027 . . . 4 -∞ ∈ ℝ*
2 xaddval 9858 . . . 4 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
31, 2mpan2 425 . . 3 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
43adantr 276 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
5 ifnefalse 3557 . . 3 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))))
6 mnfnepnf 8026 . . . . . 6 -∞ ≠ +∞
7 ifnefalse 3557 . . . . . 6 (-∞ ≠ +∞ → if(-∞ = +∞, 0, -∞) = -∞)
86, 7ax-mp 5 . . . . 5 if(-∞ = +∞, 0, -∞) = -∞
9 ifnefalse 3557 . . . . . . 7 (-∞ ≠ +∞ → if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞)))
106, 9ax-mp 5 . . . . . 6 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞))
11 eqid 2187 . . . . . . 7 -∞ = -∞
1211iftruei 3552 . . . . . 6 if(-∞ = -∞, -∞, (𝐴 + -∞)) = -∞
1310, 12eqtri 2208 . . . . 5 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞
14 ifeq12 3562 . . . . 5 ((if(-∞ = +∞, 0, -∞) = -∞ ∧ if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞) → if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞))
158, 13, 14mp2an 426 . . . 4 if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞)
16 xrmnfdc 9856 . . . . 5 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
17 ifiddc 3580 . . . . 5 (DECID 𝐴 = -∞ → if(𝐴 = -∞, -∞, -∞) = -∞)
1816, 17syl 14 . . . 4 (𝐴 ∈ ℝ* → if(𝐴 = -∞, -∞, -∞) = -∞)
1915, 18eqtrid 2232 . . 3 (𝐴 ∈ ℝ* → if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = -∞)
205, 19sylan9eqr 2242 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = -∞)
214, 20eqtrd 2220 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1363  wcel 2158  wne 2357  ifcif 3546  (class class class)co 5888  0cc0 7824   + caddc 7827  +∞cpnf 8002  -∞cmnf 8003  *cxr 8004   +𝑒 cxad 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921  ax-rnegex 7933
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-xadd 9786
This theorem is referenced by:  xaddnepnf  9871  xaddcom  9874  xnegdi  9881  xleadd1a  9886  xsubge0  9894  xposdif  9895  xlesubadd  9896  xleaddadd  9900  xblss2ps  14144  xblss2  14145
  Copyright terms: Public domain W3C validator