Proof of Theorem xaddmnf1
| Step | Hyp | Ref
| Expression |
| 1 | | mnfxr 8083 |
. . . 4
⊢ -∞
∈ ℝ* |
| 2 | | xaddval 9920 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ -∞ ∈ ℝ*) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ =
-∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0,
-∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 +
-∞)))))) |
| 3 | 1, 2 | mpan2 425 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ (𝐴
+𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0,
+∞), if(𝐴 = -∞,
if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞,
if(-∞ = -∞, -∞, (𝐴 + -∞)))))) |
| 4 | 3 | adantr 276 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ (𝐴
+𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0,
+∞), if(𝐴 = -∞,
if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞,
if(-∞ = -∞, -∞, (𝐴 + -∞)))))) |
| 5 | | ifnefalse 3572 |
. . 3
⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ =
-∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0,
-∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 + -∞))))) =
if(𝐴 = -∞,
if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞,
if(-∞ = -∞, -∞, (𝐴 + -∞))))) |
| 6 | | mnfnepnf 8082 |
. . . . . 6
⊢ -∞
≠ +∞ |
| 7 | | ifnefalse 3572 |
. . . . . 6
⊢ (-∞
≠ +∞ → if(-∞ = +∞, 0, -∞) =
-∞) |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢
if(-∞ = +∞, 0, -∞) = -∞ |
| 9 | | ifnefalse 3572 |
. . . . . . 7
⊢ (-∞
≠ +∞ → if(-∞ = +∞, +∞, if(-∞ = -∞,
-∞, (𝐴 + -∞)))
= if(-∞ = -∞, -∞, (𝐴 + -∞))) |
| 10 | 6, 9 | ax-mp 5 |
. . . . . 6
⊢
if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 + -∞))) =
if(-∞ = -∞, -∞, (𝐴 + -∞)) |
| 11 | | eqid 2196 |
. . . . . . 7
⊢ -∞
= -∞ |
| 12 | 11 | iftruei 3567 |
. . . . . 6
⊢
if(-∞ = -∞, -∞, (𝐴 + -∞)) = -∞ |
| 13 | 10, 12 | eqtri 2217 |
. . . . 5
⊢
if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 + -∞))) =
-∞ |
| 14 | | ifeq12 3577 |
. . . . 5
⊢
((if(-∞ = +∞, 0, -∞) = -∞ ∧ if(-∞ =
+∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞) → if(𝐴 = -∞, if(-∞ =
+∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ =
-∞, -∞, (𝐴 +
-∞)))) = if(𝐴 =
-∞, -∞, -∞)) |
| 15 | 8, 13, 14 | mp2an 426 |
. . . 4
⊢ if(𝐴 = -∞, if(-∞ =
+∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ =
-∞, -∞, (𝐴 +
-∞)))) = if(𝐴 =
-∞, -∞, -∞) |
| 16 | | xrmnfdc 9918 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = -∞) |
| 17 | | ifiddc 3595 |
. . . . 5
⊢
(DECID 𝐴 = -∞ → if(𝐴 = -∞, -∞, -∞) =
-∞) |
| 18 | 16, 17 | syl 14 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ if(𝐴 = -∞,
-∞, -∞) = -∞) |
| 19 | 15, 18 | eqtrid 2241 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ if(𝐴 = -∞,
if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞,
if(-∞ = -∞, -∞, (𝐴 + -∞)))) = -∞) |
| 20 | 5, 19 | sylan9eqr 2251 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ if(𝐴 = +∞,
if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0,
-∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 + -∞))))) =
-∞) |
| 21 | 4, 20 | eqtrd 2229 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ (𝐴
+𝑒 -∞) = -∞) |