ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddmnf1 GIF version

Theorem xaddmnf1 10000
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)

Proof of Theorem xaddmnf1
StepHypRef Expression
1 mnfxr 8159 . . . 4 -∞ ∈ ℝ*
2 xaddval 9997 . . . 4 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
31, 2mpan2 425 . . 3 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
43adantr 276 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
5 ifnefalse 3586 . . 3 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))))
6 mnfnepnf 8158 . . . . . 6 -∞ ≠ +∞
7 ifnefalse 3586 . . . . . 6 (-∞ ≠ +∞ → if(-∞ = +∞, 0, -∞) = -∞)
86, 7ax-mp 5 . . . . 5 if(-∞ = +∞, 0, -∞) = -∞
9 ifnefalse 3586 . . . . . . 7 (-∞ ≠ +∞ → if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞)))
106, 9ax-mp 5 . . . . . 6 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞))
11 eqid 2206 . . . . . . 7 -∞ = -∞
1211iftruei 3581 . . . . . 6 if(-∞ = -∞, -∞, (𝐴 + -∞)) = -∞
1310, 12eqtri 2227 . . . . 5 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞
14 ifeq12 3592 . . . . 5 ((if(-∞ = +∞, 0, -∞) = -∞ ∧ if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞) → if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞))
158, 13, 14mp2an 426 . . . 4 if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞)
16 xrmnfdc 9995 . . . . 5 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
17 ifiddc 3611 . . . . 5 (DECID 𝐴 = -∞ → if(𝐴 = -∞, -∞, -∞) = -∞)
1816, 17syl 14 . . . 4 (𝐴 ∈ ℝ* → if(𝐴 = -∞, -∞, -∞) = -∞)
1915, 18eqtrid 2251 . . 3 (𝐴 ∈ ℝ* → if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = -∞)
205, 19sylan9eqr 2261 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = -∞)
214, 20eqtrd 2239 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2177  wne 2377  ifcif 3575  (class class class)co 5962  0cc0 7955   + caddc 7958  +∞cpnf 8134  -∞cmnf 8135  *cxr 8136   +𝑒 cxad 9922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052  ax-rnegex 8064
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-xadd 9925
This theorem is referenced by:  xaddnepnf  10010  xaddcom  10013  xnegdi  10020  xleadd1a  10025  xsubge0  10033  xposdif  10034  xlesubadd  10035  xleaddadd  10039  xblss2ps  14961  xblss2  14962
  Copyright terms: Public domain W3C validator