| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version | ||
| Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
| Ref | Expression |
|---|---|
| ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3576 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
| 5 | 2, 4 | eqeltrd 2282 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 6 | iffalse 3579 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
| 10 | 7, 9 | eqeltrd 2282 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 12 | df-dc 837 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 13 | 11, 12 | sylib 122 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 14 | 5, 10, 13 | mpjaodan 800 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2176 ifcif 3571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 |
| This theorem is referenced by: pw2f1odclem 6933 fimax2gtrilemstep 6999 nnnninf 7230 nnnninfeq 7232 fodjuf 7249 fodjum 7250 fodju0 7251 mkvprop 7262 nninfwlporlemd 7276 nninfwlporlem 7277 nninfwlpoimlemg 7279 nninfwlpoimlemginf 7280 xaddf 9968 xaddval 9969 nninfinf 10590 seqf1oglem1 10666 seqf1oglem2 10667 uzin2 11331 fsum3ser 11741 fsumsplit 11751 explecnv 11849 fprodsplitdc 11940 nninfctlemfo 12394 pcmpt2 12700 ennnfonelemp1 12810 opifismgmdc 13236 psr1clfi 14483 elply2 15240 ply1term 15248 plyaddlem1 15252 plyaddlem 15254 lgsval 15514 lgsfvalg 15515 lgsfcl2 15516 lgscllem 15517 lgsval2lem 15520 lgsneg 15534 lgsdilem 15537 lgsdir2 15543 lgsdir 15545 lgsdi 15547 lgsne0 15548 gausslemma2dlem1cl 15569 gausslemma2dlem4 15574 bj-charfundc 15781 2omap 15969 nnsf 15979 peano4nninf 15980 nninfsellemcl 15985 nninffeq 15994 dceqnconst 16036 dcapnconst 16037 |
| Copyright terms: Public domain | W3C validator |