ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifcldcd GIF version

Theorem ifcldcd 3598
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
ifcldcd.a (𝜑𝐴𝐶)
ifcldcd.b (𝜑𝐵𝐶)
ifcldcd.dc (𝜑DECID 𝜓)
Assertion
Ref Expression
ifcldcd (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)

Proof of Theorem ifcldcd
StepHypRef Expression
1 iftrue 3567 . . . 4 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
21adantl 277 . . 3 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴)
3 ifcldcd.a . . . 4 (𝜑𝐴𝐶)
43adantr 276 . . 3 ((𝜑𝜓) → 𝐴𝐶)
52, 4eqeltrd 2273 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
6 iffalse 3570 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
76adantl 277 . . 3 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵)
8 ifcldcd.b . . . 4 (𝜑𝐵𝐶)
98adantr 276 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐵𝐶)
107, 9eqeltrd 2273 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
11 ifcldcd.dc . . 3 (𝜑DECID 𝜓)
12 df-dc 836 . . 3 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
1311, 12sylib 122 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
145, 10, 13mpjaodan 799 1 (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  ifcif 3562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-dc 836  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3563
This theorem is referenced by:  pw2f1odclem  6904  fimax2gtrilemstep  6970  nnnninf  7201  nnnninfeq  7203  fodjuf  7220  fodjum  7221  fodju0  7222  mkvprop  7233  nninfwlporlemd  7247  nninfwlporlem  7248  nninfwlpoimlemg  7250  nninfwlpoimlemginf  7251  xaddf  9938  xaddval  9939  nninfinf  10554  seqf1oglem1  10630  seqf1oglem2  10631  uzin2  11171  fsum3ser  11581  fsumsplit  11591  explecnv  11689  fprodsplitdc  11780  nninfctlemfo  12234  pcmpt2  12540  ennnfonelemp1  12650  opifismgmdc  13075  psr1clfi  14322  elply2  15079  ply1term  15087  plyaddlem1  15091  plyaddlem  15093  lgsval  15353  lgsfvalg  15354  lgsfcl2  15355  lgscllem  15356  lgsval2lem  15359  lgsneg  15373  lgsdilem  15376  lgsdir2  15382  lgsdir  15384  lgsdi  15386  lgsne0  15387  gausslemma2dlem1cl  15408  gausslemma2dlem4  15413  bj-charfundc  15562  2omap  15750  nnsf  15760  peano4nninf  15761  nninfsellemcl  15766  nninffeq  15775  dceqnconst  15817  dcapnconst  15818
  Copyright terms: Public domain W3C validator