| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version | ||
| Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
| Ref | Expression |
|---|---|
| ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3567 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
| 5 | 2, 4 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 6 | iffalse 3570 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
| 10 | 7, 9 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 12 | df-dc 836 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 13 | 11, 12 | sylib 122 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 14 | 5, 10, 13 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: pw2f1odclem 6904 fimax2gtrilemstep 6970 nnnninf 7201 nnnninfeq 7203 fodjuf 7220 fodjum 7221 fodju0 7222 mkvprop 7233 nninfwlporlemd 7247 nninfwlporlem 7248 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 xaddf 9936 xaddval 9937 nninfinf 10552 seqf1oglem1 10628 seqf1oglem2 10629 uzin2 11169 fsum3ser 11579 fsumsplit 11589 explecnv 11687 fprodsplitdc 11778 nninfctlemfo 12232 pcmpt2 12538 ennnfonelemp1 12648 opifismgmdc 13073 psr1clfi 14316 elply2 15055 ply1term 15063 plyaddlem1 15067 plyaddlem 15069 lgsval 15329 lgsfvalg 15330 lgsfcl2 15331 lgscllem 15332 lgsval2lem 15335 lgsneg 15349 lgsdilem 15352 lgsdir2 15358 lgsdir 15360 lgsdi 15362 lgsne0 15363 gausslemma2dlem1cl 15384 gausslemma2dlem4 15389 bj-charfundc 15538 2omap 15726 nnsf 15736 peano4nninf 15737 nninfsellemcl 15742 nninffeq 15751 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |