Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version |
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) |
Ref | Expression |
---|---|
ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3531 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
4 | 3 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2247 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
6 | iffalse 3534 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
7 | 6 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
9 | 8 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
10 | 7, 9 | eqeltrd 2247 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
12 | df-dc 830 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
13 | 11, 12 | sylib 121 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
14 | 5, 10, 13 | mpjaodan 793 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ifcif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-if 3527 |
This theorem is referenced by: fimax2gtrilemstep 6878 nnnninf 7102 nnnninfeq 7104 fodjuf 7121 fodjum 7122 fodju0 7123 mkvprop 7134 nninfwlporlemd 7148 nninfwlporlem 7149 nninfwlpoimlemg 7151 nninfwlpoimlemginf 7152 xaddf 9801 xaddval 9802 uzin2 10951 fsum3ser 11360 fsumsplit 11370 explecnv 11468 fprodsplitdc 11559 pcmpt2 12296 ennnfonelemp1 12361 opifismgmdc 12625 lgsval 13699 lgsfvalg 13700 lgsfcl2 13701 lgscllem 13702 lgsval2lem 13705 lgsneg 13719 lgsdilem 13722 lgsdir2 13728 lgsdir 13730 lgsdi 13732 lgsne0 13733 bj-charfundc 13843 nnsf 14038 peano4nninf 14039 nninfsellemcl 14044 nninffeq 14053 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |