| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version | ||
| Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
| Ref | Expression |
|---|---|
| ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3576 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
| 5 | 2, 4 | eqeltrd 2282 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 6 | iffalse 3579 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
| 10 | 7, 9 | eqeltrd 2282 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 12 | df-dc 837 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 13 | 11, 12 | sylib 122 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 14 | 5, 10, 13 | mpjaodan 800 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2176 ifcif 3571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 |
| This theorem is referenced by: pw2f1odclem 6931 fimax2gtrilemstep 6997 nnnninf 7228 nnnninfeq 7230 fodjuf 7247 fodjum 7248 fodju0 7249 mkvprop 7260 nninfwlporlemd 7274 nninfwlporlem 7275 nninfwlpoimlemg 7277 nninfwlpoimlemginf 7278 xaddf 9966 xaddval 9967 nninfinf 10588 seqf1oglem1 10664 seqf1oglem2 10665 uzin2 11298 fsum3ser 11708 fsumsplit 11718 explecnv 11816 fprodsplitdc 11907 nninfctlemfo 12361 pcmpt2 12667 ennnfonelemp1 12777 opifismgmdc 13203 psr1clfi 14450 elply2 15207 ply1term 15215 plyaddlem1 15219 plyaddlem 15221 lgsval 15481 lgsfvalg 15482 lgsfcl2 15483 lgscllem 15484 lgsval2lem 15487 lgsneg 15501 lgsdilem 15504 lgsdir2 15510 lgsdir 15512 lgsdi 15514 lgsne0 15515 gausslemma2dlem1cl 15536 gausslemma2dlem4 15541 bj-charfundc 15744 2omap 15932 nnsf 15942 peano4nninf 15943 nninfsellemcl 15948 nninffeq 15957 dceqnconst 15999 dcapnconst 16000 |
| Copyright terms: Public domain | W3C validator |