![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version |
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) |
Ref | Expression |
---|---|
ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3539 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2254 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
6 | iffalse 3542 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
7 | 6 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
10 | 7, 9 | eqeltrd 2254 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
12 | df-dc 835 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
13 | 11, 12 | sylib 122 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
14 | 5, 10, 13 | mpjaodan 798 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ifcif 3534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-if 3535 |
This theorem is referenced by: fimax2gtrilemstep 6899 nnnninf 7123 nnnninfeq 7125 fodjuf 7142 fodjum 7143 fodju0 7144 mkvprop 7155 nninfwlporlemd 7169 nninfwlporlem 7170 nninfwlpoimlemg 7172 nninfwlpoimlemginf 7173 xaddf 9842 xaddval 9843 uzin2 10991 fsum3ser 11400 fsumsplit 11410 explecnv 11508 fprodsplitdc 11599 pcmpt2 12336 ennnfonelemp1 12401 opifismgmdc 12744 lgsval 14298 lgsfvalg 14299 lgsfcl2 14300 lgscllem 14301 lgsval2lem 14304 lgsneg 14318 lgsdilem 14321 lgsdir2 14327 lgsdir 14329 lgsdi 14331 lgsne0 14332 bj-charfundc 14442 nnsf 14636 peano4nninf 14637 nninfsellemcl 14642 nninffeq 14651 dceqnconst 14689 dcapnconst 14690 |
Copyright terms: Public domain | W3C validator |