ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifcldcd GIF version

Theorem ifcldcd 3594
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
ifcldcd.a (𝜑𝐴𝐶)
ifcldcd.b (𝜑𝐵𝐶)
ifcldcd.dc (𝜑DECID 𝜓)
Assertion
Ref Expression
ifcldcd (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)

Proof of Theorem ifcldcd
StepHypRef Expression
1 iftrue 3563 . . . 4 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
21adantl 277 . . 3 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴)
3 ifcldcd.a . . . 4 (𝜑𝐴𝐶)
43adantr 276 . . 3 ((𝜑𝜓) → 𝐴𝐶)
52, 4eqeltrd 2270 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
6 iffalse 3566 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
76adantl 277 . . 3 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵)
8 ifcldcd.b . . . 4 (𝜑𝐵𝐶)
98adantr 276 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐵𝐶)
107, 9eqeltrd 2270 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
11 ifcldcd.dc . . 3 (𝜑DECID 𝜓)
12 df-dc 836 . . 3 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
1311, 12sylib 122 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
145, 10, 13mpjaodan 799 1 (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  ifcif 3558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-if 3559
This theorem is referenced by:  pw2f1odclem  6892  fimax2gtrilemstep  6958  nnnninf  7187  nnnninfeq  7189  fodjuf  7206  fodjum  7207  fodju0  7208  mkvprop  7219  nninfwlporlemd  7233  nninfwlporlem  7234  nninfwlpoimlemg  7236  nninfwlpoimlemginf  7237  xaddf  9913  xaddval  9914  nninfinf  10517  seqf1oglem1  10593  seqf1oglem2  10594  uzin2  11134  fsum3ser  11543  fsumsplit  11553  explecnv  11651  fprodsplitdc  11742  nninfctlemfo  12180  pcmpt2  12485  ennnfonelemp1  12566  opifismgmdc  12957  elply2  14914  ply1term  14922  plyaddlem1  14926  plyaddlem  14928  lgsval  15161  lgsfvalg  15162  lgsfcl2  15163  lgscllem  15164  lgsval2lem  15167  lgsneg  15181  lgsdilem  15184  lgsdir2  15190  lgsdir  15192  lgsdi  15194  lgsne0  15195  gausslemma2dlem1cl  15216  gausslemma2dlem4  15221  bj-charfundc  15370  nnsf  15565  peano4nninf  15566  nninfsellemcl  15571  nninffeq  15580  dceqnconst  15620  dcapnconst  15621
  Copyright terms: Public domain W3C validator