ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifcldcd GIF version

Theorem ifcldcd 3640
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
ifcldcd.a (𝜑𝐴𝐶)
ifcldcd.b (𝜑𝐵𝐶)
ifcldcd.dc (𝜑DECID 𝜓)
Assertion
Ref Expression
ifcldcd (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)

Proof of Theorem ifcldcd
StepHypRef Expression
1 iftrue 3607 . . . 4 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
21adantl 277 . . 3 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴)
3 ifcldcd.a . . . 4 (𝜑𝐴𝐶)
43adantr 276 . . 3 ((𝜑𝜓) → 𝐴𝐶)
52, 4eqeltrd 2306 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
6 iffalse 3610 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
76adantl 277 . . 3 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵)
8 ifcldcd.b . . . 4 (𝜑𝐵𝐶)
98adantr 276 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐵𝐶)
107, 9eqeltrd 2306 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
11 ifcldcd.dc . . 3 (𝜑DECID 𝜓)
12 df-dc 840 . . 3 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
1311, 12sylib 122 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
145, 10, 13mpjaodan 803 1 (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  pw2f1odclem  6995  fimax2gtrilemstep  7062  nnnninf  7293  nnnninfeq  7295  fodjuf  7312  fodjum  7313  fodju0  7314  mkvprop  7325  nninfwlporlemd  7339  nninfwlporlem  7340  nninfwlpoimlemg  7342  nninfwlpoimlemginf  7343  xaddf  10040  xaddval  10041  nninfinf  10665  seqf1oglem1  10741  seqf1oglem2  10742  uzin2  11498  fsum3ser  11908  fsumsplit  11918  explecnv  12016  fprodsplitdc  12107  nninfctlemfo  12561  pcmpt2  12867  ennnfonelemp1  12977  opifismgmdc  13404  psr1clfi  14652  elply2  15409  ply1term  15417  plyaddlem1  15421  plyaddlem  15423  lgsval  15683  lgsfvalg  15684  lgsfcl2  15685  lgscllem  15686  lgsval2lem  15689  lgsneg  15703  lgsdilem  15706  lgsdir2  15712  lgsdir  15714  lgsdi  15716  lgsne0  15717  gausslemma2dlem1cl  15738  gausslemma2dlem4  15743  bj-charfundc  16171  2omap  16359  nnsf  16371  peano4nninf  16372  nninfsellemcl  16377  nninffeq  16386  dceqnconst  16428  dcapnconst  16429
  Copyright terms: Public domain W3C validator