| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version | ||
| Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) | 
| ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) | 
| Ref | Expression | 
|---|---|
| ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iftrue 3566 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) | 
| 3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) | 
| 5 | 2, 4 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) | 
| 6 | iffalse 3569 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) | 
| 8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) | 
| 10 | 7, 9 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) | 
| 11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 12 | df-dc 836 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 13 | 11, 12 | sylib 122 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) | 
| 14 | 5, 10, 13 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 | 
| This theorem is referenced by: pw2f1odclem 6895 fimax2gtrilemstep 6961 nnnninf 7192 nnnninfeq 7194 fodjuf 7211 fodjum 7212 fodju0 7213 mkvprop 7224 nninfwlporlemd 7238 nninfwlporlem 7239 nninfwlpoimlemg 7241 nninfwlpoimlemginf 7242 xaddf 9919 xaddval 9920 nninfinf 10535 seqf1oglem1 10611 seqf1oglem2 10612 uzin2 11152 fsum3ser 11562 fsumsplit 11572 explecnv 11670 fprodsplitdc 11761 nninfctlemfo 12207 pcmpt2 12513 ennnfonelemp1 12623 opifismgmdc 13014 elply2 14971 ply1term 14979 plyaddlem1 14983 plyaddlem 14985 lgsval 15245 lgsfvalg 15246 lgsfcl2 15247 lgscllem 15248 lgsval2lem 15251 lgsneg 15265 lgsdilem 15268 lgsdir2 15274 lgsdir 15276 lgsdi 15278 lgsne0 15279 gausslemma2dlem1cl 15300 gausslemma2dlem4 15305 bj-charfundc 15454 nnsf 15649 peano4nninf 15650 nninfsellemcl 15655 nninffeq 15664 dceqnconst 15704 dcapnconst 15705 | 
| Copyright terms: Public domain | W3C validator |