| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version | ||
| Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
| Ref | Expression |
|---|---|
| ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3567 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
| 5 | 2, 4 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 6 | iffalse 3570 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
| 10 | 7, 9 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 12 | df-dc 836 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 13 | 11, 12 | sylib 122 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 14 | 5, 10, 13 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: pw2f1odclem 6904 fimax2gtrilemstep 6970 nnnninf 7201 nnnninfeq 7203 fodjuf 7220 fodjum 7221 fodju0 7222 mkvprop 7233 nninfwlporlemd 7247 nninfwlporlem 7248 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 xaddf 9938 xaddval 9939 nninfinf 10554 seqf1oglem1 10630 seqf1oglem2 10631 uzin2 11171 fsum3ser 11581 fsumsplit 11591 explecnv 11689 fprodsplitdc 11780 nninfctlemfo 12234 pcmpt2 12540 ennnfonelemp1 12650 opifismgmdc 13075 psr1clfi 14322 elply2 15079 ply1term 15087 plyaddlem1 15091 plyaddlem 15093 lgsval 15353 lgsfvalg 15354 lgsfcl2 15355 lgscllem 15356 lgsval2lem 15359 lgsneg 15373 lgsdilem 15376 lgsdir2 15382 lgsdir 15384 lgsdi 15386 lgsne0 15387 gausslemma2dlem1cl 15408 gausslemma2dlem4 15413 bj-charfundc 15562 2omap 15750 nnsf 15760 peano4nninf 15761 nninfsellemcl 15766 nninffeq 15775 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |