![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version |
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) |
Ref | Expression |
---|---|
ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3402 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 272 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
4 | 3 | adantr 271 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2165 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
6 | iffalse 3405 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
7 | 6 | adantl 272 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
9 | 8 | adantr 271 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
10 | 7, 9 | eqeltrd 2165 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
12 | df-dc 782 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
13 | 11, 12 | sylib 121 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
14 | 5, 10, 13 | mpjaodan 748 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 665 DECID wdc 781 = wceq 1290 ∈ wcel 1439 ifcif 3397 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-if 3398 |
This theorem is referenced by: fimax2gtrilemstep 6670 fodjuomnilemf 6854 fodjuomnilemm 6855 fodjuomnilem0 6856 nnnninf 6860 uzin2 10474 fisumser 10844 fsumsplit 10855 explecnv 10953 nnsf 12161 peano4nninf 12162 nninfalllemn 12164 nninfsellemcl 12169 |
Copyright terms: Public domain | W3C validator |