Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifcldcd | GIF version |
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
ifcldcd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ifcldcd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
ifcldcd.dc | ⊢ (𝜑 → DECID 𝜓) |
Ref | Expression |
---|---|
ifcldcd | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3525 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifcldcd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
4 | 3 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2243 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
6 | iffalse 3528 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
7 | 6 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
8 | ifcldcd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
9 | 8 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
10 | 7, 9 | eqeltrd 2243 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
11 | ifcldcd.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
12 | df-dc 825 | . . 3 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
13 | 11, 12 | sylib 121 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
14 | 5, 10, 13 | mpjaodan 788 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3521 |
This theorem is referenced by: fimax2gtrilemstep 6866 nnnninf 7090 nnnninfeq 7092 fodjuf 7109 fodjum 7110 fodju0 7111 mkvprop 7122 xaddf 9780 xaddval 9781 uzin2 10929 fsum3ser 11338 fsumsplit 11348 explecnv 11446 fprodsplitdc 11537 pcmpt2 12274 ennnfonelemp1 12339 opifismgmdc 12602 lgsval 13545 lgsfvalg 13546 lgsfcl2 13547 lgscllem 13548 lgsval2lem 13551 lgsneg 13565 lgsdilem 13568 lgsdir2 13574 lgsdir 13576 lgsdi 13578 lgsne0 13579 bj-charfundc 13690 nnsf 13885 peano4nninf 13886 nninfsellemcl 13891 nninffeq 13900 dceqnconst 13938 dcapnconst 13939 |
Copyright terms: Public domain | W3C validator |