ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifcldcd GIF version

Theorem ifcldcd 3430
Description: Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
ifcldcd.a (𝜑𝐴𝐶)
ifcldcd.b (𝜑𝐵𝐶)
ifcldcd.dc (𝜑DECID 𝜓)
Assertion
Ref Expression
ifcldcd (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)

Proof of Theorem ifcldcd
StepHypRef Expression
1 iftrue 3402 . . . 4 (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴)
21adantl 272 . . 3 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴)
3 ifcldcd.a . . . 4 (𝜑𝐴𝐶)
43adantr 271 . . 3 ((𝜑𝜓) → 𝐴𝐶)
52, 4eqeltrd 2165 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
6 iffalse 3405 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵)
76adantl 272 . . 3 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵)
8 ifcldcd.b . . . 4 (𝜑𝐵𝐶)
98adantr 271 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐵𝐶)
107, 9eqeltrd 2165 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
11 ifcldcd.dc . . 3 (𝜑DECID 𝜓)
12 df-dc 782 . . 3 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
1311, 12sylib 121 . 2 (𝜑 → (𝜓 ∨ ¬ 𝜓))
145, 10, 13mpjaodan 748 1 (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 665  DECID wdc 781   = wceq 1290  wcel 1439  ifcif 3397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-dc 782  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-if 3398
This theorem is referenced by:  fimax2gtrilemstep  6670  fodjuomnilemf  6854  fodjuomnilemm  6855  fodjuomnilem0  6856  nnnninf  6860  uzin2  10474  fisumser  10844  fsumsplit  10855  explecnv  10953  nnsf  12161  peano4nninf  12162  nninfalllemn  12164  nninfsellemcl  12169
  Copyright terms: Public domain W3C validator