ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifsbdc GIF version

Theorem ifsbdc 3532
Description: Distribute a function over an if-clause. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
ifsbdc.1 (if(𝜑, 𝐴, 𝐵) = 𝐴𝐶 = 𝐷)
ifsbdc.2 (if(𝜑, 𝐴, 𝐵) = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
ifsbdc (DECID 𝜑𝐶 = if(𝜑, 𝐷, 𝐸))

Proof of Theorem ifsbdc
StepHypRef Expression
1 exmiddc 826 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 iftrue 3525 . . . . 5 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
3 ifsbdc.1 . . . . 5 (if(𝜑, 𝐴, 𝐵) = 𝐴𝐶 = 𝐷)
42, 3syl 14 . . . 4 (𝜑𝐶 = 𝐷)
5 iftrue 3525 . . . 4 (𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐷)
64, 5eqtr4d 2201 . . 3 (𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
7 iffalse 3528 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
8 ifsbdc.2 . . . . 5 (if(𝜑, 𝐴, 𝐵) = 𝐵𝐶 = 𝐸)
97, 8syl 14 . . . 4 𝜑𝐶 = 𝐸)
10 iffalse 3528 . . . 4 𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐸)
119, 10eqtr4d 2201 . . 3 𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
126, 11jaoi 706 . 2 ((𝜑 ∨ ¬ 𝜑) → 𝐶 = if(𝜑, 𝐷, 𝐸))
131, 12syl 14 1 (DECID 𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  DECID wdc 824   = wceq 1343  ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-if 3521
This theorem is referenced by:  fvifdc  5508  lgsneg  13565  lgsdilem  13568
  Copyright terms: Public domain W3C validator