ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifsbdc GIF version

Theorem ifsbdc 3615
Description: Distribute a function over an if-clause. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
ifsbdc.1 (if(𝜑, 𝐴, 𝐵) = 𝐴𝐶 = 𝐷)
ifsbdc.2 (if(𝜑, 𝐴, 𝐵) = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
ifsbdc (DECID 𝜑𝐶 = if(𝜑, 𝐷, 𝐸))

Proof of Theorem ifsbdc
StepHypRef Expression
1 exmiddc 841 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 iftrue 3607 . . . . 5 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
3 ifsbdc.1 . . . . 5 (if(𝜑, 𝐴, 𝐵) = 𝐴𝐶 = 𝐷)
42, 3syl 14 . . . 4 (𝜑𝐶 = 𝐷)
5 iftrue 3607 . . . 4 (𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐷)
64, 5eqtr4d 2265 . . 3 (𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
7 iffalse 3610 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
8 ifsbdc.2 . . . . 5 (if(𝜑, 𝐴, 𝐵) = 𝐵𝐶 = 𝐸)
97, 8syl 14 . . . 4 𝜑𝐶 = 𝐸)
10 iffalse 3610 . . . 4 𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐸)
119, 10eqtr4d 2265 . . 3 𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
126, 11jaoi 721 . 2 ((𝜑 ∨ ¬ 𝜑) → 𝐶 = if(𝜑, 𝐷, 𝐸))
131, 12syl 14 1 (DECID 𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713  DECID wdc 839   = wceq 1395  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  fvifdc  5648  lgsneg  15697  lgsdilem  15700
  Copyright terms: Public domain W3C validator