| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifsbdc | GIF version | ||
| Description: Distribute a function over an if-clause. (Contributed by Jim Kingdon, 1-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| ifsbdc.1 | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝐶 = 𝐷) | 
| ifsbdc.2 | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → 𝐶 = 𝐸) | 
| Ref | Expression | 
|---|---|
| ifsbdc | ⊢ (DECID 𝜑 → 𝐶 = if(𝜑, 𝐷, 𝐸)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmiddc 837 | . 2 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 2 | iftrue 3566 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | ifsbdc.1 | . . . . 5 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝐶 = 𝐷) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | 
| 5 | iftrue 3566 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐷) | |
| 6 | 4, 5 | eqtr4d 2232 | . . 3 ⊢ (𝜑 → 𝐶 = if(𝜑, 𝐷, 𝐸)) | 
| 7 | iffalse 3569 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 8 | ifsbdc.2 | . . . . 5 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → 𝐶 = 𝐸) | |
| 9 | 7, 8 | syl 14 | . . . 4 ⊢ (¬ 𝜑 → 𝐶 = 𝐸) | 
| 10 | iffalse 3569 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐷, 𝐸) = 𝐸) | |
| 11 | 9, 10 | eqtr4d 2232 | . . 3 ⊢ (¬ 𝜑 → 𝐶 = if(𝜑, 𝐷, 𝐸)) | 
| 12 | 6, 11 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → 𝐶 = if(𝜑, 𝐷, 𝐸)) | 
| 13 | 1, 12 | syl 14 | 1 ⊢ (DECID 𝜑 → 𝐶 = if(𝜑, 𝐷, 𝐸)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 | 
| This theorem is referenced by: fvifdc 5580 lgsneg 15265 lgsdilem 15268 | 
| Copyright terms: Public domain | W3C validator |