ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnefalse GIF version

Theorem ifnefalse 3557
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 3554 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
ifnefalse (𝐴𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷)

Proof of Theorem ifnefalse
StepHypRef Expression
1 df-ne 2358 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 iffalse 3554 . 2 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷)
31, 2sylbi 121 1 (𝐴𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1363  wne 2357  ifcif 3546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-ne 2358  df-if 3547
This theorem is referenced by:  xnegmnf  9843  rexneg  9844  xaddpnf1  9860  xaddpnf2  9861  xaddmnf1  9862  xaddmnf2  9863  mnfaddpnf  9865  rexadd  9866  fztpval  10097  pcval  12310  xpsfrnel  12782  lgsval3  14715  lgsdinn0  14745
  Copyright terms: Public domain W3C validator