ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdif GIF version

Theorem invdif 3416
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)

Proof of Theorem invdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . . 5 𝑥 ∈ V
2 eldif 3176 . . . . 5 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
31, 2mpbiran 943 . . . 4 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
43anbi2i 457 . . 3 ((𝑥𝐴𝑥 ∈ (V ∖ 𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 elin 3357 . . 3 (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ (𝑥𝐴𝑥 ∈ (V ∖ 𝐵)))
6 eldif 3176 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
74, 5, 63bitr4i 212 . 2 (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
87eqriv 2203 1 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cdif 3164  cin 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3169  df-in 3173
This theorem is referenced by:  indif2  3418  difundir  3427  difindir  3429  difdif2ss  3431  difun1  3434  difdifdirss  3546  nn0supp  9354
  Copyright terms: Public domain W3C validator