![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > invdif | GIF version |
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
invdif | ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | eldif 3140 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | mpbiran 940 | . . . 4 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥 ∈ 𝐵) |
4 | 3 | anbi2i 457 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | elin 3320 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (V ∖ 𝐵))) | |
6 | eldif 3140 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
8 | 7 | eqriv 2174 | 1 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∖ cdif 3128 ∩ cin 3130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-in 3137 |
This theorem is referenced by: indif2 3381 difundir 3390 difindir 3392 difdif2ss 3394 difun1 3397 difdifdirss 3509 nn0supp 9230 |
Copyright terms: Public domain | W3C validator |