ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdif GIF version

Theorem invdif 3401
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)

Proof of Theorem invdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5 𝑥 ∈ V
2 eldif 3162 . . . . 5 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
31, 2mpbiran 942 . . . 4 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
43anbi2i 457 . . 3 ((𝑥𝐴𝑥 ∈ (V ∖ 𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 elin 3342 . . 3 (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ (𝑥𝐴𝑥 ∈ (V ∖ 𝐵)))
6 eldif 3162 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
74, 5, 63bitr4i 212 . 2 (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
87eqriv 2190 1 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3150  cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159
This theorem is referenced by:  indif2  3403  difundir  3412  difindir  3414  difdif2ss  3416  difun1  3419  difdifdirss  3531  nn0supp  9292
  Copyright terms: Public domain W3C validator