ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdif GIF version

Theorem invdif 3364
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)

Proof of Theorem invdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . 5 𝑥 ∈ V
2 eldif 3125 . . . . 5 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
31, 2mpbiran 930 . . . 4 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
43anbi2i 453 . . 3 ((𝑥𝐴𝑥 ∈ (V ∖ 𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 elin 3305 . . 3 (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ (𝑥𝐴𝑥 ∈ (V ∖ 𝐵)))
6 eldif 3125 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
74, 5, 63bitr4i 211 . 2 (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
87eqriv 2162 1 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cdif 3113  cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122
This theorem is referenced by:  indif2  3366  difundir  3375  difindir  3377  difdif2ss  3379  difun1  3382  difdifdirss  3493  nn0supp  9166
  Copyright terms: Public domain W3C validator