ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincom GIF version

Theorem mincom 11128
Description: The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
mincom inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )

Proof of Theorem mincom
StepHypRef Expression
1 prcom 3635 . 2 {𝐴, 𝐵} = {𝐵, 𝐴}
21infeq1i 6957 1 inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )
Colors of variables: wff set class
Syntax hints:   = wceq 1335  {cpr 3561  infcinf 6927  cr 7731   < clt 7912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-pr 3567  df-uni 3773  df-sup 6928  df-inf 6929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator