| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mincom | GIF version | ||
| Description: The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.) |
| Ref | Expression |
|---|---|
| mincom | ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 3710 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | infeq1i 7122 | 1 ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 {cpr 3635 infcinf 7092 ℝcr 7931 < clt 8114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-pr 3641 df-uni 3853 df-sup 7093 df-inf 7094 |
| This theorem is referenced by: mingeb 11597 2zinfmin 11598 hovergt0 15166 |
| Copyright terms: Public domain | W3C validator |