Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincom GIF version

Theorem mincom 10886
 Description: The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
mincom inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )

Proof of Theorem mincom
StepHypRef Expression
1 prcom 3563 . 2 {𝐴, 𝐵} = {𝐵, 𝐴}
21infeq1i 6850 1 inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )
 Colors of variables: wff set class Syntax hints:   = wceq 1312  {cpr 3492  infcinf 6820  ℝcr 7540   < clt 7718 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095 This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-un 3039  df-pr 3498  df-uni 3701  df-sup 6821  df-inf 6822 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator