Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mincom | GIF version |
Description: The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.) |
Ref | Expression |
---|---|
mincom | ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 3652 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | 1 | infeq1i 6978 | 1 ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 {cpr 3577 infcinf 6948 ℝcr 7752 < clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-pr 3583 df-uni 3790 df-sup 6949 df-inf 6950 |
This theorem is referenced by: mingeb 11183 2zinfmin 11184 |
Copyright terms: Public domain | W3C validator |