ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mincom GIF version

Theorem mincom 11170
Description: The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
mincom inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )

Proof of Theorem mincom
StepHypRef Expression
1 prcom 3652 . 2 {𝐴, 𝐵} = {𝐵, 𝐴}
21infeq1i 6978 1 inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )
Colors of variables: wff set class
Syntax hints:   = wceq 1343  {cpr 3577  infcinf 6948  cr 7752   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-pr 3583  df-uni 3790  df-sup 6949  df-inf 6950
This theorem is referenced by:  mingeb  11183  2zinfmin  11184
  Copyright terms: Public domain W3C validator