| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mincom | GIF version | ||
| Description: The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.) |
| Ref | Expression |
|---|---|
| mincom | ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 3699 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | infeq1i 7088 | 1 ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 {cpr 3624 infcinf 7058 ℝcr 7895 < clt 8078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-pr 3630 df-uni 3841 df-sup 7059 df-inf 7060 |
| This theorem is referenced by: mingeb 11424 2zinfmin 11425 hovergt0 14970 |
| Copyright terms: Public domain | W3C validator |