Proof of Theorem resasplitss
| Step | Hyp | Ref
 | Expression | 
| 1 |   | unidm 3306 | 
. . . 4
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) = (𝐹 ↾ (𝐴 ∩ 𝐵)) | 
| 2 | 1 | uneq1i 3313 | 
. . 3
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) | 
| 3 |   | un4 3323 | 
. . . 4
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) | 
| 4 |   | simp3 1001 | 
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) | 
| 5 | 4 | uneq1d 3316 | 
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) | 
| 6 | 5 | uneq2d 3317 | 
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) | 
| 7 |   | resundi 4959 | 
. . . . . . 7
⊢ (𝐹 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) | 
| 8 |   | inundifss 3528 | 
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 | 
| 9 |   | ssres2 4973 | 
. . . . . . . 8
⊢ (((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 → (𝐹 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ⊆ (𝐹 ↾ 𝐴)) | 
| 10 | 8, 9 | ax-mp 5 | 
. . . . . . 7
⊢ (𝐹 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ⊆ (𝐹 ↾ 𝐴) | 
| 11 | 7, 10 | eqsstrri 3216 | 
. . . . . 6
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ⊆ (𝐹 ↾ 𝐴) | 
| 12 |   | resundi 4959 | 
. . . . . . 7
⊢ (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) | 
| 13 |   | incom 3355 | 
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | 
| 14 | 13 | uneq1i 3313 | 
. . . . . . . . 9
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) | 
| 15 |   | inundifss 3528 | 
. . . . . . . . 9
⊢ ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 | 
| 16 | 14, 15 | eqsstri 3215 | 
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 | 
| 17 |   | ssres2 4973 | 
. . . . . . . 8
⊢ (((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 → (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) ⊆ (𝐺 ↾ 𝐵)) | 
| 18 | 16, 17 | ax-mp 5 | 
. . . . . . 7
⊢ (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) ⊆ (𝐺 ↾ 𝐵) | 
| 19 | 12, 18 | eqsstrri 3216 | 
. . . . . 6
⊢ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) ⊆ (𝐺 ↾ 𝐵) | 
| 20 |   | unss12 3335 | 
. . . . . 6
⊢ ((((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ⊆ (𝐹 ↾ 𝐴) ∧ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) ⊆ (𝐺 ↾ 𝐵)) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵))) | 
| 21 | 11, 19, 20 | mp2an 426 | 
. . . . 5
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) | 
| 22 | 6, 21 | eqsstrdi 3235 | 
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵))) | 
| 23 | 3, 22 | eqsstrrid 3230 | 
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵))) | 
| 24 | 2, 23 | eqsstrrid 3230 | 
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵))) | 
| 25 |   | fnresdm 5367 | 
. . . 4
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | 
| 26 |   | fnresdm 5367 | 
. . . 4
⊢ (𝐺 Fn 𝐵 → (𝐺 ↾ 𝐵) = 𝐺) | 
| 27 |   | uneq12 3312 | 
. . . 4
⊢ (((𝐹 ↾ 𝐴) = 𝐹 ∧ (𝐺 ↾ 𝐵) = 𝐺) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) | 
| 28 | 25, 26, 27 | syl2an 289 | 
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) | 
| 29 | 28 | 3adant3 1019 | 
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) | 
| 30 | 24, 29 | sseqtrd 3221 | 
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ (𝐹 ∪ 𝐺)) |