Proof of Theorem resasplitss
Step | Hyp | Ref
| Expression |
1 | | unidm 3265 |
. . . 4
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) = (𝐹 ↾ (𝐴 ∩ 𝐵)) |
2 | 1 | uneq1i 3272 |
. . 3
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) |
3 | | un4 3282 |
. . . 4
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) |
4 | | simp3 989 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) |
5 | 4 | uneq1d 3275 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) |
6 | 5 | uneq2d 3276 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
7 | | resundi 4897 |
. . . . . . 7
⊢ (𝐹 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) |
8 | | inundifss 3486 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 |
9 | | ssres2 4911 |
. . . . . . . 8
⊢ (((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 → (𝐹 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ⊆ (𝐹 ↾ 𝐴)) |
10 | 8, 9 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ⊆ (𝐹 ↾ 𝐴) |
11 | 7, 10 | eqsstrri 3175 |
. . . . . 6
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ⊆ (𝐹 ↾ 𝐴) |
12 | | resundi 4897 |
. . . . . . 7
⊢ (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) |
13 | | incom 3314 |
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
14 | 13 | uneq1i 3272 |
. . . . . . . . 9
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) |
15 | | inundifss 3486 |
. . . . . . . . 9
⊢ ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 |
16 | 14, 15 | eqsstri 3174 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 |
17 | | ssres2 4911 |
. . . . . . . 8
⊢ (((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) ⊆ 𝐵 → (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) ⊆ (𝐺 ↾ 𝐵)) |
18 | 16, 17 | ax-mp 5 |
. . . . . . 7
⊢ (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) ⊆ (𝐺 ↾ 𝐵) |
19 | 12, 18 | eqsstrri 3175 |
. . . . . 6
⊢ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) ⊆ (𝐺 ↾ 𝐵) |
20 | | unss12 3294 |
. . . . . 6
⊢ ((((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ⊆ (𝐹 ↾ 𝐴) ∧ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) ⊆ (𝐺 ↾ 𝐵)) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵))) |
21 | 11, 19, 20 | mp2an 423 |
. . . . 5
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) |
22 | 6, 21 | eqsstrdi 3194 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵))) |
23 | 3, 22 | eqsstrrid 3189 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵))) |
24 | 2, 23 | eqsstrrid 3189 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵))) |
25 | | fnresdm 5297 |
. . . 4
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
26 | | fnresdm 5297 |
. . . 4
⊢ (𝐺 Fn 𝐵 → (𝐺 ↾ 𝐵) = 𝐺) |
27 | | uneq12 3271 |
. . . 4
⊢ (((𝐹 ↾ 𝐴) = 𝐹 ∧ (𝐺 ↾ 𝐵) = 𝐺) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) |
28 | 25, 26, 27 | syl2an 287 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) |
29 | 28 | 3adant3 1007 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) |
30 | 24, 29 | sseqtrd 3180 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) ⊆ (𝐹 ∪ 𝐺)) |