ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resasplitss GIF version

Theorem resasplitss 5367
Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.)
Assertion
Ref Expression
resasplitss ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ (𝐹𝐺))

Proof of Theorem resasplitss
StepHypRef Expression
1 unidm 3265 . . . 4 ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) = (𝐹 ↾ (𝐴𝐵))
21uneq1i 3272 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
3 un4 3282 . . . 4 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
4 simp3 989 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
54uneq1d 3275 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
65uneq2d 3276 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
7 resundi 4897 . . . . . . 7 (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵)))
8 inundifss 3486 . . . . . . . 8 ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴
9 ssres2 4911 . . . . . . . 8 (((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴 → (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) ⊆ (𝐹𝐴))
108, 9ax-mp 5 . . . . . . 7 (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) ⊆ (𝐹𝐴)
117, 10eqsstrri 3175 . . . . . 6 ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ⊆ (𝐹𝐴)
12 resundi 4897 . . . . . . 7 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
13 incom 3314 . . . . . . . . . 10 (𝐴𝐵) = (𝐵𝐴)
1413uneq1i 3272 . . . . . . . . 9 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
15 inundifss 3486 . . . . . . . . 9 ((𝐵𝐴) ∪ (𝐵𝐴)) ⊆ 𝐵
1614, 15eqsstri 3174 . . . . . . . 8 ((𝐴𝐵) ∪ (𝐵𝐴)) ⊆ 𝐵
17 ssres2 4911 . . . . . . . 8 (((𝐴𝐵) ∪ (𝐵𝐴)) ⊆ 𝐵 → (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) ⊆ (𝐺𝐵))
1816, 17ax-mp 5 . . . . . . 7 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) ⊆ (𝐺𝐵)
1912, 18eqsstrri 3175 . . . . . 6 ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ⊆ (𝐺𝐵)
20 unss12 3294 . . . . . 6 ((((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ⊆ (𝐹𝐴) ∧ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ⊆ (𝐺𝐵)) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
2111, 19, 20mp2an 423 . . . . 5 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵))
226, 21eqsstrdi 3194 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
233, 22eqsstrrid 3189 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
242, 23eqsstrrid 3189 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
25 fnresdm 5297 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
26 fnresdm 5297 . . . 4 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
27 uneq12 3271 . . . 4 (((𝐹𝐴) = 𝐹 ∧ (𝐺𝐵) = 𝐺) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
2825, 26, 27syl2an 287 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
29283adant3 1007 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
3024, 29sseqtrd 3180 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ (𝐹𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968   = wceq 1343  cdif 3113  cun 3114  cin 3115  wss 3116  cres 4606   Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614  df-res 4616  df-fun 5190  df-fn 5191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator