ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resasplitss GIF version

Theorem resasplitss 5377
Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.)
Assertion
Ref Expression
resasplitss ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ (𝐹𝐺))

Proof of Theorem resasplitss
StepHypRef Expression
1 unidm 3270 . . . 4 ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) = (𝐹 ↾ (𝐴𝐵))
21uneq1i 3277 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
3 un4 3287 . . . 4 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
4 simp3 994 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
54uneq1d 3280 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
65uneq2d 3281 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
7 resundi 4904 . . . . . . 7 (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵)))
8 inundifss 3492 . . . . . . . 8 ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴
9 ssres2 4918 . . . . . . . 8 (((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴 → (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) ⊆ (𝐹𝐴))
108, 9ax-mp 5 . . . . . . 7 (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) ⊆ (𝐹𝐴)
117, 10eqsstrri 3180 . . . . . 6 ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ⊆ (𝐹𝐴)
12 resundi 4904 . . . . . . 7 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
13 incom 3319 . . . . . . . . . 10 (𝐴𝐵) = (𝐵𝐴)
1413uneq1i 3277 . . . . . . . . 9 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
15 inundifss 3492 . . . . . . . . 9 ((𝐵𝐴) ∪ (𝐵𝐴)) ⊆ 𝐵
1614, 15eqsstri 3179 . . . . . . . 8 ((𝐴𝐵) ∪ (𝐵𝐴)) ⊆ 𝐵
17 ssres2 4918 . . . . . . . 8 (((𝐴𝐵) ∪ (𝐵𝐴)) ⊆ 𝐵 → (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) ⊆ (𝐺𝐵))
1816, 17ax-mp 5 . . . . . . 7 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) ⊆ (𝐺𝐵)
1912, 18eqsstrri 3180 . . . . . 6 ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ⊆ (𝐺𝐵)
20 unss12 3299 . . . . . 6 ((((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ⊆ (𝐹𝐴) ∧ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ⊆ (𝐺𝐵)) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
2111, 19, 20mp2an 424 . . . . 5 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵))
226, 21eqsstrdi 3199 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
233, 22eqsstrrid 3194 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
242, 23eqsstrrid 3194 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
25 fnresdm 5307 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
26 fnresdm 5307 . . . 4 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
27 uneq12 3276 . . . 4 (((𝐹𝐴) = 𝐹 ∧ (𝐺𝐵) = 𝐺) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
2825, 26, 27syl2an 287 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
29283adant3 1012 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
3024, 29sseqtrd 3185 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ (𝐹𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973   = wceq 1348  cdif 3118  cun 3119  cin 3120  wss 3121  cres 4613   Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-dm 4621  df-res 4623  df-fun 5200  df-fn 5201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator