ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resasplitss GIF version

Theorem resasplitss 5387
Description: If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.)
Assertion
Ref Expression
resasplitss ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ (𝐹𝐺))

Proof of Theorem resasplitss
StepHypRef Expression
1 unidm 3276 . . . 4 ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) = (𝐹 ↾ (𝐴𝐵))
21uneq1i 3283 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
3 un4 3293 . . . 4 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
4 simp3 999 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
54uneq1d 3286 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
65uneq2d 3287 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
7 resundi 4913 . . . . . . 7 (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵)))
8 inundifss 3498 . . . . . . . 8 ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴
9 ssres2 4927 . . . . . . . 8 (((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ 𝐴 → (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) ⊆ (𝐹𝐴))
108, 9ax-mp 5 . . . . . . 7 (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) ⊆ (𝐹𝐴)
117, 10eqsstrri 3186 . . . . . 6 ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ⊆ (𝐹𝐴)
12 resundi 4913 . . . . . . 7 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
13 incom 3325 . . . . . . . . . 10 (𝐴𝐵) = (𝐵𝐴)
1413uneq1i 3283 . . . . . . . . 9 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
15 inundifss 3498 . . . . . . . . 9 ((𝐵𝐴) ∪ (𝐵𝐴)) ⊆ 𝐵
1614, 15eqsstri 3185 . . . . . . . 8 ((𝐴𝐵) ∪ (𝐵𝐴)) ⊆ 𝐵
17 ssres2 4927 . . . . . . . 8 (((𝐴𝐵) ∪ (𝐵𝐴)) ⊆ 𝐵 → (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) ⊆ (𝐺𝐵))
1816, 17ax-mp 5 . . . . . . 7 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) ⊆ (𝐺𝐵)
1912, 18eqsstrri 3186 . . . . . 6 ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ⊆ (𝐺𝐵)
20 unss12 3305 . . . . . 6 ((((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ⊆ (𝐹𝐴) ∧ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ⊆ (𝐺𝐵)) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
2111, 19, 20mp2an 426 . . . . 5 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵))
226, 21eqsstrdi 3205 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
233, 22eqsstrrid 3200 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
242, 23eqsstrrid 3200 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ ((𝐹𝐴) ∪ (𝐺𝐵)))
25 fnresdm 5317 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
26 fnresdm 5317 . . . 4 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
27 uneq12 3282 . . . 4 (((𝐹𝐴) = 𝐹 ∧ (𝐺𝐵) = 𝐺) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
2825, 26, 27syl2an 289 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
29283adant3 1017 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
3024, 29sseqtrd 3191 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ (𝐹𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  cdif 3124  cun 3125  cin 3126  wss 3127  cres 4622   Fn wfn 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-dm 4630  df-res 4632  df-fun 5210  df-fn 5211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator