| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitabl | GIF version | ||
| Description: The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| unitgrp.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitgrp.2 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| Ref | Expression |
|---|---|
| unitabl | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 13640 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | unitgrp.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | unitgrp.2 | . . . 4 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 4 | 2, 3 | unitgrp 13748 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
| 5 | 1, 4 | syl 14 | . 2 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Grp) |
| 6 | 3 | a1i 9 | . . 3 ⊢ (𝑅 ∈ CRing → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 7 | eqid 2196 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 8 | 7 | crngmgp 13636 | . . 3 ⊢ (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd) |
| 9 | 5 | grpmndd 13215 | . . 3 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
| 10 | basfn 12761 | . . . . 5 ⊢ Base Fn V | |
| 11 | elex 2774 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ V) | |
| 12 | funfvex 5578 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 13 | 12 | funfni 5361 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 14 | 10, 11, 13 | sylancr 414 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ V) |
| 15 | eqidd 2197 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅)) | |
| 16 | 2 | a1i 9 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑈 = (Unit‘𝑅)) |
| 17 | ringsrg 13679 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 18 | 1, 17 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
| 19 | 15, 16, 18 | unitssd 13741 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑈 ⊆ (Base‘𝑅)) |
| 20 | 14, 19 | ssexd 4174 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑈 ∈ V) |
| 21 | 6, 8, 9, 20 | subcmnd 13539 | . 2 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| 22 | isabl 13494 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 23 | 5, 21, 22 | sylanbrc 417 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 Fn wfn 5254 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 ↾s cress 12704 Grpcgrp 13202 CMndccmn 13490 Abelcabl 13491 mulGrpcmgp 13552 SRingcsrg 13595 Ringcrg 13628 CRingccrg 13629 Unitcui 13719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-tpos 6312 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-cmn 13492 df-abl 13493 df-mgp 13553 df-ur 13592 df-srg 13596 df-ring 13630 df-cring 13631 df-oppr 13700 df-dvdsr 13721 df-unit 13722 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |