![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitabl | GIF version |
Description: The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
unitgrp.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitgrp.2 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
Ref | Expression |
---|---|
unitabl | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 13507 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | unitgrp.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | unitgrp.2 | . . . 4 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
4 | 2, 3 | unitgrp 13615 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
5 | 1, 4 | syl 14 | . 2 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Grp) |
6 | 3 | a1i 9 | . . 3 ⊢ (𝑅 ∈ CRing → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
7 | eqid 2193 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
8 | 7 | crngmgp 13503 | . . 3 ⊢ (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd) |
9 | 5 | grpmndd 13088 | . . 3 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
10 | basfn 12679 | . . . . 5 ⊢ Base Fn V | |
11 | elex 2771 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ V) | |
12 | funfvex 5572 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
13 | 12 | funfni 5355 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
14 | 10, 11, 13 | sylancr 414 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ∈ V) |
15 | eqidd 2194 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅)) | |
16 | 2 | a1i 9 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑈 = (Unit‘𝑅)) |
17 | ringsrg 13546 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
18 | 1, 17 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
19 | 15, 16, 18 | unitssd 13608 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑈 ⊆ (Base‘𝑅)) |
20 | 14, 19 | ssexd 4170 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑈 ∈ V) |
21 | 6, 8, 9, 20 | subcmnd 13406 | . 2 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
22 | isabl 13361 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
23 | 5, 21, 22 | sylanbrc 417 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Fn wfn 5250 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 ↾s cress 12622 Grpcgrp 13075 CMndccmn 13357 Abelcabl 13358 mulGrpcmgp 13419 SRingcsrg 13462 Ringcrg 13495 CRingccrg 13496 Unitcui 13586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-cmn 13359 df-abl 13360 df-mgp 13420 df-ur 13459 df-srg 13463 df-ring 13497 df-cring 13498 df-oppr 13567 df-dvdsr 13588 df-unit 13589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |