| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isabld | GIF version | ||
| Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) | 
| Ref | Expression | 
|---|---|
| isabld.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | 
| isabld.p | ⊢ (𝜑 → + = (+g‘𝐺)) | 
| isabld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| isabld.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | 
| Ref | Expression | 
|---|---|
| isabld | ⊢ (𝜑 → 𝐺 ∈ Abel) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isabld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | isabld.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 3 | isabld.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 4 | 1 | grpmndd 13145 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 5 | isabld.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 6 | 2, 3, 4, 5 | iscmnd 13428 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | 
| 7 | isabl 13418 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 8 | 1, 6, 7 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐺 ∈ Abel) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Grpcgrp 13132 CMndccmn 13414 Abelcabl 13415 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-grp 13135 df-cmn 13416 df-abl 13417 | 
| This theorem is referenced by: subgabl 13462 ablressid 13465 ringabl 13588 lmodabl 13890 | 
| Copyright terms: Public domain | W3C validator |