Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isabld | GIF version |
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
Ref | Expression |
---|---|
isabld.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isabld.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isabld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
isabld.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
isabld | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | isabld.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
3 | isabld.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐺)) | |
4 | 1 | grpmndd 12750 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
5 | isabld.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
6 | 2, 3, 4, 5 | iscmnd 12897 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
7 | isabl 12888 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
8 | 1, 6, 7 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐺 ∈ Abel) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 +gcplusg 12492 Grpcgrp 12738 CMndccmn 12884 Abelcabl 12885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-grp 12741 df-cmn 12886 df-abl 12887 |
This theorem is referenced by: ringabl 13007 |
Copyright terms: Public domain | W3C validator |