![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isabld | GIF version |
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
Ref | Expression |
---|---|
isabld.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
isabld.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
isabld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
isabld.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
isabld | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | isabld.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
3 | isabld.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐺)) | |
4 | 1 | grpmndd 13085 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
5 | isabld.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
6 | 2, 3, 4, 5 | iscmnd 13368 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
7 | isabl 13358 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
8 | 1, 6, 7 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐺 ∈ Abel) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Grpcgrp 13072 CMndccmn 13354 Abelcabl 13355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-grp 13075 df-cmn 13356 df-abl 13357 |
This theorem is referenced by: subgabl 13402 ablressid 13405 ringabl 13528 lmodabl 13830 |
Copyright terms: Public domain | W3C validator |