ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabld GIF version

Theorem isabld 13553
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
isabld.b (𝜑𝐵 = (Base‘𝐺))
isabld.p (𝜑+ = (+g𝐺))
isabld.g (𝜑𝐺 ∈ Grp)
isabld.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
isabld (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isabld
StepHypRef Expression
1 isabld.g . 2 (𝜑𝐺 ∈ Grp)
2 isabld.b . . 3 (𝜑𝐵 = (Base‘𝐺))
3 isabld.p . . 3 (𝜑+ = (+g𝐺))
41grpmndd 13263 . . 3 (𝜑𝐺 ∈ Mnd)
5 isabld.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
62, 3, 4, 5iscmnd 13552 . 2 (𝜑𝐺 ∈ CMnd)
7 isabl 13542 . 2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
81, 6, 7sylanbrc 417 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1372  wcel 2175  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  Grpcgrp 13250  CMndccmn 13538  Abelcabl 13539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5229  df-fv 5276  df-ov 5937  df-grp 13253  df-cmn 13540  df-abl 13541
This theorem is referenced by:  subgabl  13586  ablressid  13589  ringabl  13712  lmodabl  14014
  Copyright terms: Public domain W3C validator