| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isabld | GIF version | ||
| Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
| Ref | Expression |
|---|---|
| isabld.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| isabld.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| isabld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| isabld.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| Ref | Expression |
|---|---|
| isabld | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | isabld.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 3 | isabld.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 4 | 1 | grpmndd 13420 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 5 | isabld.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 6 | 2, 3, 4, 5 | iscmnd 13709 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 7 | isabl 13699 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 8 | 1, 6, 7 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 Grpcgrp 13407 CMndccmn 13695 Abelcabl 13696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-grp 13410 df-cmn 13697 df-abl 13698 |
| This theorem is referenced by: subgabl 13743 ablressid 13746 ringabl 13869 lmodabl 14171 |
| Copyright terms: Public domain | W3C validator |