ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabld GIF version

Theorem isabld 12898
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
isabld.b (𝜑𝐵 = (Base‘𝐺))
isabld.p (𝜑+ = (+g𝐺))
isabld.g (𝜑𝐺 ∈ Grp)
isabld.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
isabld (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isabld
StepHypRef Expression
1 isabld.g . 2 (𝜑𝐺 ∈ Grp)
2 isabld.b . . 3 (𝜑𝐵 = (Base‘𝐺))
3 isabld.p . . 3 (𝜑+ = (+g𝐺))
41grpmndd 12750 . . 3 (𝜑𝐺 ∈ Mnd)
5 isabld.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
62, 3, 4, 5iscmnd 12897 . 2 (𝜑𝐺 ∈ CMnd)
7 isabl 12888 . 2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
81, 6, 7sylanbrc 417 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  Grpcgrp 12738  CMndccmn 12884  Abelcabl 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868  df-grp 12741  df-cmn 12886  df-abl 12887
This theorem is referenced by:  ringabl  13007
  Copyright terms: Public domain W3C validator