| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isabl2 | GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| iscmn.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| isabl2 | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 13833 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | grpmnd 13548 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 3 | iscmn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | iscmn.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 5 | 3, 4 | iscmn 13838 | . . . . 5 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 6 | 5 | baib 924 | . . . 4 ⊢ (𝐺 ∈ Mnd → (𝐺 ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 7 | 2, 6 | syl 14 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 8 | 7 | pm5.32i 454 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 9 | 1, 8 | bitri 184 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Mndcmnd 13457 Grpcgrp 13541 CMndccmn 13829 Abelcabl 13830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6010 df-grp 13544 df-cmn 13831 df-abl 13832 |
| This theorem is referenced by: isabli 13845 invghm 13874 imasabl 13881 |
| Copyright terms: Public domain | W3C validator |