ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabl2 GIF version

Theorem isabl2 13050
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
iscmn.b 𝐵 = (Base‘𝐺)
iscmn.p + = (+g𝐺)
Assertion
Ref Expression
isabl2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isabl2
StepHypRef Expression
1 isabl 13045 . 2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
2 grpmnd 12838 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3 iscmn.b . . . . . 6 𝐵 = (Base‘𝐺)
4 iscmn.p . . . . . 6 + = (+g𝐺)
53, 4iscmn 13049 . . . . 5 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
65baib 919 . . . 4 (𝐺 ∈ Mnd → (𝐺 ∈ CMnd ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
72, 6syl 14 . . 3 (𝐺 ∈ Grp → (𝐺 ∈ CMnd ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
87pm5.32i 454 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
91, 8bitri 184 1 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  cfv 5216  (class class class)co 5874  Basecbs 12456  +gcplusg 12530  Mndcmnd 12771  Grpcgrp 12831  CMndccmn 13041  Abelcabl 13042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-un 3133  df-in 3135  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-iota 5178  df-fv 5224  df-ov 5877  df-grp 12834  df-cmn 13043  df-abl 13044
This theorem is referenced by:  isabli  13056
  Copyright terms: Public domain W3C validator