| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablpropd | GIF version | ||
| Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| ablpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| ablpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| ablpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| ablpropd | ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | ablpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | ablpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 4 | 1, 2, 3 | grppropd 13558 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| 5 | 1, 2, 3 | cmnpropd 13840 | . . 3 ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |
| 6 | 4, 5 | anbi12d 473 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd))) |
| 7 | isabl 13833 | . 2 ⊢ (𝐾 ∈ Abel ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd)) | |
| 8 | isabl 13833 | . 2 ⊢ (𝐿 ∈ Abel ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd)) | |
| 9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Grpcgrp 13541 CMndccmn 13829 Abelcabl 13830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5960 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-cmn 13831 df-abl 13832 |
| This theorem is referenced by: ablprop 13842 rngpropd 13926 opprrng 14048 |
| Copyright terms: Public domain | W3C validator |