ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfidisj GIF version

Theorem unfidisj 6559
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
Assertion
Ref Expression
unfidisj ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfidisj
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 3132 . . 3 (𝑤 = ∅ → (𝐴𝑤) = (𝐴 ∪ ∅))
21eleq1d 2151 . 2 (𝑤 = ∅ → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∪ ∅) ∈ Fin))
3 uneq2 3132 . . 3 (𝑤 = 𝑦 → (𝐴𝑤) = (𝐴𝑦))
43eleq1d 2151 . 2 (𝑤 = 𝑦 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
5 uneq2 3132 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐴𝑤) = (𝐴 ∪ (𝑦 ∪ {𝑧})))
65eleq1d 2151 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
7 uneq2 3132 . . 3 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
87eleq1d 2151 . 2 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝐵) ∈ Fin))
9 un0 3299 . . 3 (𝐴 ∪ ∅) = 𝐴
10 simp1 939 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ Fin)
119, 10syl5eqel 2169 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴 ∪ ∅) ∈ Fin)
12 unass 3141 . . . 4 ((𝐴𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧}))
13 simpr 108 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴𝑦) ∈ Fin)
14 vex 2615 . . . . . 6 𝑧 ∈ V
1514a1i 9 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧 ∈ V)
16 simplrr 503 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧 ∈ (𝐵𝑦))
1716eldifad 2995 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧𝐵)
18 simp3 941 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
1918ad3antrrr 476 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴𝐵) = ∅)
20 minel 3326 . . . . . . . 8 ((𝑧𝐵 ∧ (𝐴𝐵) = ∅) → ¬ 𝑧𝐴)
2117, 19, 20syl2anc 403 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧𝐴)
2216eldifbd 2996 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧𝑦)
23 ioran 702 . . . . . . 7 (¬ (𝑧𝐴𝑧𝑦) ↔ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))
2421, 22, 23sylanbrc 408 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ (𝑧𝐴𝑧𝑦))
25 elun 3125 . . . . . 6 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴𝑧𝑦))
2624, 25sylnibr 635 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧 ∈ (𝐴𝑦))
27 unsnfi 6556 . . . . 5 (((𝐴𝑦) ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ (𝐴𝑦)) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
2813, 15, 26, 27syl3anc 1170 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
2912, 28syl5eqelr 2170 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
3029ex 113 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) → ((𝐴𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
31 simp2 940 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ Fin)
322, 4, 6, 8, 11, 30, 31findcard2sd 6538 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 662  w3a 920   = wceq 1285  wcel 1434  Vcvv 2612  cdif 2981  cun 2982  cin 2983  wss 2984  c0 3269  {csn 3422  Fincfn 6387
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-1o 6113  df-er 6222  df-en 6388  df-fin 6390
This theorem is referenced by:  unfiin  6563  prfidisj  6564  xpfi  6565  hashunlem  10047  hashun  10048
  Copyright terms: Public domain W3C validator