ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfidisj GIF version

Theorem unfidisj 6934
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
Assertion
Ref Expression
unfidisj ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfidisj
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 3295 . . 3 (𝑤 = ∅ → (𝐴𝑤) = (𝐴 ∪ ∅))
21eleq1d 2256 . 2 (𝑤 = ∅ → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∪ ∅) ∈ Fin))
3 uneq2 3295 . . 3 (𝑤 = 𝑦 → (𝐴𝑤) = (𝐴𝑦))
43eleq1d 2256 . 2 (𝑤 = 𝑦 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
5 uneq2 3295 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐴𝑤) = (𝐴 ∪ (𝑦 ∪ {𝑧})))
65eleq1d 2256 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
7 uneq2 3295 . . 3 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
87eleq1d 2256 . 2 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝐵) ∈ Fin))
9 un0 3468 . . 3 (𝐴 ∪ ∅) = 𝐴
10 simp1 998 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ Fin)
119, 10eqeltrid 2274 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴 ∪ ∅) ∈ Fin)
12 unass 3304 . . . 4 ((𝐴𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧}))
13 simpr 110 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴𝑦) ∈ Fin)
14 vex 2752 . . . . . 6 𝑧 ∈ V
1514a1i 9 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧 ∈ V)
16 simplrr 536 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧 ∈ (𝐵𝑦))
1716eldifad 3152 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧𝐵)
18 simp3 1000 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
1918ad3antrrr 492 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴𝐵) = ∅)
20 minel 3496 . . . . . . . 8 ((𝑧𝐵 ∧ (𝐴𝐵) = ∅) → ¬ 𝑧𝐴)
2117, 19, 20syl2anc 411 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧𝐴)
2216eldifbd 3153 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧𝑦)
23 ioran 753 . . . . . . 7 (¬ (𝑧𝐴𝑧𝑦) ↔ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))
2421, 22, 23sylanbrc 417 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ (𝑧𝐴𝑧𝑦))
25 elun 3288 . . . . . 6 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴𝑧𝑦))
2624, 25sylnibr 678 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧 ∈ (𝐴𝑦))
27 unsnfi 6931 . . . . 5 (((𝐴𝑦) ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ (𝐴𝑦)) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
2813, 15, 26, 27syl3anc 1248 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
2912, 28eqeltrrid 2275 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
3029ex 115 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) → ((𝐴𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
31 simp2 999 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ Fin)
322, 4, 6, 8, 11, 30, 31findcard2sd 6905 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 979   = wceq 1363  wcel 2158  Vcvv 2749  cdif 3138  cun 3139  cin 3140  wss 3141  c0 3434  {csn 3604  Fincfn 6753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1o 6430  df-er 6548  df-en 6754  df-fin 6756
This theorem is referenced by:  unfiin  6938  prfidisj  6939  tpfidisj  6940  xpfi  6942  iunfidisj  6958  hashunlem  10797  hashun  10798  fsumsplitsnun  11440  fsum2dlemstep  11455  fsumconst  11475  fprodsplitsn  11654
  Copyright terms: Public domain W3C validator