ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfidisj GIF version

Theorem unfidisj 6869
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
Assertion
Ref Expression
unfidisj ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfidisj
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 3256 . . 3 (𝑤 = ∅ → (𝐴𝑤) = (𝐴 ∪ ∅))
21eleq1d 2226 . 2 (𝑤 = ∅ → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∪ ∅) ∈ Fin))
3 uneq2 3256 . . 3 (𝑤 = 𝑦 → (𝐴𝑤) = (𝐴𝑦))
43eleq1d 2226 . 2 (𝑤 = 𝑦 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
5 uneq2 3256 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐴𝑤) = (𝐴 ∪ (𝑦 ∪ {𝑧})))
65eleq1d 2226 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
7 uneq2 3256 . . 3 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
87eleq1d 2226 . 2 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝐵) ∈ Fin))
9 un0 3428 . . 3 (𝐴 ∪ ∅) = 𝐴
10 simp1 982 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ Fin)
119, 10eqeltrid 2244 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴 ∪ ∅) ∈ Fin)
12 unass 3265 . . . 4 ((𝐴𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧}))
13 simpr 109 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴𝑦) ∈ Fin)
14 vex 2715 . . . . . 6 𝑧 ∈ V
1514a1i 9 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧 ∈ V)
16 simplrr 526 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧 ∈ (𝐵𝑦))
1716eldifad 3113 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧𝐵)
18 simp3 984 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
1918ad3antrrr 484 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴𝐵) = ∅)
20 minel 3456 . . . . . . . 8 ((𝑧𝐵 ∧ (𝐴𝐵) = ∅) → ¬ 𝑧𝐴)
2117, 19, 20syl2anc 409 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧𝐴)
2216eldifbd 3114 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧𝑦)
23 ioran 742 . . . . . . 7 (¬ (𝑧𝐴𝑧𝑦) ↔ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))
2421, 22, 23sylanbrc 414 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ (𝑧𝐴𝑧𝑦))
25 elun 3249 . . . . . 6 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴𝑧𝑦))
2624, 25sylnibr 667 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧 ∈ (𝐴𝑦))
27 unsnfi 6866 . . . . 5 (((𝐴𝑦) ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ (𝐴𝑦)) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
2813, 15, 26, 27syl3anc 1220 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
2912, 28eqeltrrid 2245 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
3029ex 114 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) → ((𝐴𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
31 simp2 983 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ Fin)
322, 4, 6, 8, 11, 30, 31findcard2sd 6840 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  w3a 963   = wceq 1335  wcel 2128  Vcvv 2712  cdif 3099  cun 3100  cin 3101  wss 3102  c0 3395  {csn 3561  Fincfn 6688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-iord 4329  df-on 4331  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-1o 6366  df-er 6483  df-en 6689  df-fin 6691
This theorem is referenced by:  unfiin  6873  prfidisj  6874  tpfidisj  6875  xpfi  6877  iunfidisj  6893  hashunlem  10690  hashun  10691  fsumsplitsnun  11328  fsum2dlemstep  11343  fsumconst  11363  fprodsplitsn  11542
  Copyright terms: Public domain W3C validator