ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfidisj GIF version

Theorem unfidisj 6921
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
Assertion
Ref Expression
unfidisj ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfidisj
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 3284 . . 3 (𝑤 = ∅ → (𝐴𝑤) = (𝐴 ∪ ∅))
21eleq1d 2246 . 2 (𝑤 = ∅ → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∪ ∅) ∈ Fin))
3 uneq2 3284 . . 3 (𝑤 = 𝑦 → (𝐴𝑤) = (𝐴𝑦))
43eleq1d 2246 . 2 (𝑤 = 𝑦 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
5 uneq2 3284 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐴𝑤) = (𝐴 ∪ (𝑦 ∪ {𝑧})))
65eleq1d 2246 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
7 uneq2 3284 . . 3 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
87eleq1d 2246 . 2 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝐵) ∈ Fin))
9 un0 3457 . . 3 (𝐴 ∪ ∅) = 𝐴
10 simp1 997 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ Fin)
119, 10eqeltrid 2264 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴 ∪ ∅) ∈ Fin)
12 unass 3293 . . . 4 ((𝐴𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧}))
13 simpr 110 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴𝑦) ∈ Fin)
14 vex 2741 . . . . . 6 𝑧 ∈ V
1514a1i 9 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧 ∈ V)
16 simplrr 536 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧 ∈ (𝐵𝑦))
1716eldifad 3141 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → 𝑧𝐵)
18 simp3 999 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
1918ad3antrrr 492 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴𝐵) = ∅)
20 minel 3485 . . . . . . . 8 ((𝑧𝐵 ∧ (𝐴𝐵) = ∅) → ¬ 𝑧𝐴)
2117, 19, 20syl2anc 411 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧𝐴)
2216eldifbd 3142 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧𝑦)
23 ioran 752 . . . . . . 7 (¬ (𝑧𝐴𝑧𝑦) ↔ (¬ 𝑧𝐴 ∧ ¬ 𝑧𝑦))
2421, 22, 23sylanbrc 417 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ (𝑧𝐴𝑧𝑦))
25 elun 3277 . . . . . 6 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴𝑧𝑦))
2624, 25sylnibr 677 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ¬ 𝑧 ∈ (𝐴𝑦))
27 unsnfi 6918 . . . . 5 (((𝐴𝑦) ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ (𝐴𝑦)) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
2813, 15, 26, 27syl3anc 1238 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → ((𝐴𝑦) ∪ {𝑧}) ∈ Fin)
2912, 28eqeltrrid 2265 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) ∧ (𝐴𝑦) ∈ Fin) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin)
3029ex 115 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐵𝑧 ∈ (𝐵𝑦))) → ((𝐴𝑦) ∈ Fin → (𝐴 ∪ (𝑦 ∪ {𝑧})) ∈ Fin))
31 simp2 998 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ Fin)
322, 4, 6, 8, 11, 30, 31findcard2sd 6892 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  w3a 978   = wceq 1353  wcel 2148  Vcvv 2738  cdif 3127  cun 3128  cin 3129  wss 3130  c0 3423  {csn 3593  Fincfn 6740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1o 6417  df-er 6535  df-en 6741  df-fin 6743
This theorem is referenced by:  unfiin  6925  prfidisj  6926  tpfidisj  6927  xpfi  6929  iunfidisj  6945  hashunlem  10784  hashun  10785  fsumsplitsnun  11427  fsum2dlemstep  11442  fsumconst  11462  fprodsplitsn  11641
  Copyright terms: Public domain W3C validator