Proof of Theorem rmo3f
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-rmo 2483 | 
. 2
⊢
(∃*𝑥 ∈
𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 2 |   | sban 1974 | 
. . . . . . . . . . 11
⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | 
| 3 |   | rmo3f.1 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝐴 | 
| 4 | 3 | clelsb1f 2343 | 
. . . . . . . . . . . 12
⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | 
| 5 | 4 | anbi1i 458 | 
. . . . . . . . . . 11
⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | 
| 6 | 2, 5 | bitri 184 | 
. . . . . . . . . 10
⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | 
| 7 | 6 | anbi2i 457 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) | 
| 8 |   | an4 586 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑))) | 
| 9 |   | ancom 266 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | 
| 10 | 9 | anbi1i 458 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑))) | 
| 11 | 7, 8, 10 | 3bitri 206 | 
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑))) | 
| 12 | 11 | imbi1i 238 | 
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦)) | 
| 13 |   | impexp 263 | 
. . . . . . 7
⊢ ((((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | 
| 14 |   | impexp 263 | 
. . . . . . 7
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) | 
| 15 | 12, 13, 14 | 3bitri 206 | 
. . . . . 6
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) | 
| 16 | 15 | albii 1484 | 
. . . . 5
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) | 
| 17 |   | df-ral 2480 | 
. . . . 5
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) | 
| 18 |   | rmo3f.2 | 
. . . . . . 7
⊢
Ⅎ𝑦𝐴 | 
| 19 | 18 | nfcri 2333 | 
. . . . . 6
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 | 
| 20 | 19 | r19.21 2573 | 
. . . . 5
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | 
| 21 | 16, 17, 20 | 3bitr2i 208 | 
. . . 4
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | 
| 22 | 21 | albii 1484 | 
. . 3
⊢
(∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | 
| 23 |   | rmo3f.3 | 
. . . . 5
⊢
Ⅎ𝑦𝜑 | 
| 24 | 19, 23 | nfan 1579 | 
. . . 4
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) | 
| 25 | 24 | mo3 2099 | 
. . 3
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦)) | 
| 26 |   | df-ral 2480 | 
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | 
| 27 | 22, 25, 26 | 3bitr4i 212 | 
. 2
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 28 | 1, 27 | bitri 184 | 
1
⊢
(∃*𝑥 ∈
𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |