ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo3f GIF version

Theorem rmo3f 2936
Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
rmo3f.1 𝑥𝐴
rmo3f.2 𝑦𝐴
rmo3f.3 𝑦𝜑
Assertion
Ref Expression
rmo3f (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem rmo3f
StepHypRef Expression
1 df-rmo 2463 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 sban 1955 . . . . . . . . . . 11 ([𝑦 / 𝑥](𝑥𝐴𝜑) ↔ ([𝑦 / 𝑥]𝑥𝐴 ∧ [𝑦 / 𝑥]𝜑))
3 rmo3f.1 . . . . . . . . . . . . 13 𝑥𝐴
43clelsb1f 2323 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
54anbi1i 458 . . . . . . . . . . 11 (([𝑦 / 𝑥]𝑥𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
62, 5bitri 184 . . . . . . . . . 10 ([𝑦 / 𝑥](𝑥𝐴𝜑) ↔ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
76anbi2i 457 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) ↔ ((𝑥𝐴𝜑) ∧ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)))
8 an4 586 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
9 ancom 266 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑥𝐴))
109anbi1i 458 . . . . . . . . 9 (((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
117, 8, 103bitri 206 . . . . . . . 8 (((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
1211imbi1i 238 . . . . . . 7 ((((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (((𝑦𝐴𝑥𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦))
13 impexp 263 . . . . . . 7 ((((𝑦𝐴𝑥𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦) ↔ ((𝑦𝐴𝑥𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
14 impexp 263 . . . . . . 7 (((𝑦𝐴𝑥𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
1512, 13, 143bitri 206 . . . . . 6 ((((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
1615albii 1470 . . . . 5 (∀𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
17 df-ral 2460 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
18 rmo3f.2 . . . . . . 7 𝑦𝐴
1918nfcri 2313 . . . . . 6 𝑦 𝑥𝐴
2019r19.21 2553 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
2116, 17, 203bitr2i 208 . . . 4 (∀𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
2221albii 1470 . . 3 (∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
23 rmo3f.3 . . . . 5 𝑦𝜑
2419, 23nfan 1565 . . . 4 𝑦(𝑥𝐴𝜑)
2524mo3 2080 . . 3 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦))
26 df-ral 2460 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
2722, 25, 263bitr4i 212 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
281, 27bitri 184 1 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351  wnf 1460  [wsb 1762  ∃*wmo 2027  wcel 2148  wnfc 2306  wral 2455  ∃*wrmo 2458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rmo 2463
This theorem is referenced by:  rmo4f  2937
  Copyright terms: Public domain W3C validator