| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moeq | GIF version | ||
| Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 2777 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 2 | eueq 2943 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | bitr3i 186 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴) |
| 4 | 3 | biimpi 120 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴) |
| 5 | df-mo 2057 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)) | |
| 6 | 4, 5 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∃wex 1514 ∃!weu 2053 ∃*wmo 2054 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: euxfr2dc 2957 reueq 2971 mosn 3668 sndisj 4039 disjxsn 4041 reusv1 4504 funopabeq 5306 funcnvsn 5318 fvmptg 5654 fvopab6 5675 ovmpt4g 6067 ovi3 6082 ov6g 6083 oprabex3 6213 1stconst 6306 2ndconst 6307 axaddf 7980 axmulf 7981 |
| Copyright terms: Public domain | W3C validator |