| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moeq | GIF version | ||
| Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 2769 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 2 | eueq 2935 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | bitr3i 186 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴) |
| 4 | 3 | biimpi 120 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴) |
| 5 | df-mo 2049 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)) | |
| 6 | 4, 5 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: euxfr2dc 2949 reueq 2963 mosn 3659 sndisj 4030 disjxsn 4032 reusv1 4494 funopabeq 5295 funcnvsn 5304 fvmptg 5638 fvopab6 5659 ovmpt4g 6046 ovi3 6061 ov6g 6062 oprabex3 6187 1stconst 6280 2ndconst 6281 axaddf 7937 axmulf 7938 |
| Copyright terms: Public domain | W3C validator |