| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moeq | GIF version | ||
| Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 2780 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 2 | eueq 2948 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | bitr3i 186 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴) |
| 4 | 3 | biimpi 120 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴) |
| 5 | df-mo 2059 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)) | |
| 6 | 4, 5 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1516 ∃!weu 2055 ∃*wmo 2056 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: euxfr2dc 2962 reueq 2976 mosn 3674 sndisj 4050 disjxsn 4052 reusv1 4518 funopabeq 5321 funcnvsn 5333 fvmptg 5673 fvopab6 5694 ovmpt4g 6086 ovi3 6101 ov6g 6102 oprabex3 6232 1stconst 6325 2ndconst 6326 axaddf 8011 axmulf 8012 |
| Copyright terms: Public domain | W3C validator |