![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > moeq | GIF version |
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
Ref | Expression |
---|---|
moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 2766 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
2 | eueq 2931 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | bitr3i 186 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴) |
4 | 3 | biimpi 120 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴) |
5 | df-mo 2046 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)) | |
6 | 4, 5 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∃!weu 2042 ∃*wmo 2043 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: euxfr2dc 2945 reueq 2959 mosn 3654 sndisj 4025 disjxsn 4027 reusv1 4487 funopabeq 5282 funcnvsn 5291 fvmptg 5625 fvopab6 5646 ovmpt4g 6033 ovi3 6047 ov6g 6048 oprabex3 6173 1stconst 6265 2ndconst 6266 axaddf 7918 axmulf 7919 |
Copyright terms: Public domain | W3C validator |