ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moeq GIF version

Theorem moeq 2935
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.)
Assertion
Ref Expression
moeq ∃*𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem moeq
StepHypRef Expression
1 isset 2766 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
2 eueq 2931 . . . 4 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2bitr3i 186 . . 3 (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴)
43biimpi 120 . 2 (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)
5 df-mo 2046 . 2 (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴))
64, 5mpbir 146 1 ∃*𝑥 𝑥 = 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1503  ∃!weu 2042  ∃*wmo 2043  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  euxfr2dc  2945  reueq  2959  mosn  3654  sndisj  4025  disjxsn  4027  reusv1  4487  funopabeq  5282  funcnvsn  5291  fvmptg  5625  fvopab6  5646  ovmpt4g  6033  ovi3  6047  ov6g  6048  oprabex3  6173  1stconst  6265  2ndconst  6266  axaddf  7918  axmulf  7919
  Copyright terms: Public domain W3C validator