| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moeq | GIF version | ||
| Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 2778 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 2 | eueq 2944 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | bitr3i 186 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴) |
| 4 | 3 | biimpi 120 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴) |
| 5 | df-mo 2058 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)) | |
| 6 | 4, 5 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1515 ∃!weu 2054 ∃*wmo 2055 ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: euxfr2dc 2958 reueq 2972 mosn 3669 sndisj 4040 disjxsn 4042 reusv1 4505 funopabeq 5307 funcnvsn 5319 fvmptg 5655 fvopab6 5676 ovmpt4g 6068 ovi3 6083 ov6g 6084 oprabex3 6214 1stconst 6307 2ndconst 6308 axaddf 7981 axmulf 7982 |
| Copyright terms: Public domain | W3C validator |