ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moeq GIF version

Theorem moeq 2948
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.)
Assertion
Ref Expression
moeq ∃*𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem moeq
StepHypRef Expression
1 isset 2778 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
2 eueq 2944 . . . 4 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2bitr3i 186 . . 3 (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴)
43biimpi 120 . 2 (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)
5 df-mo 2058 . 2 (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴))
64, 5mpbir 146 1 ∃*𝑥 𝑥 = 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wex 1515  ∃!weu 2054  ∃*wmo 2055  wcel 2176  Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  euxfr2dc  2958  reueq  2972  mosn  3669  sndisj  4040  disjxsn  4042  reusv1  4505  funopabeq  5307  funcnvsn  5319  fvmptg  5655  fvopab6  5676  ovmpt4g  6068  ovi3  6083  ov6g  6084  oprabex3  6214  1stconst  6307  2ndconst  6308  axaddf  7981  axmulf  7982
  Copyright terms: Public domain W3C validator