ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moeq GIF version

Theorem moeq 2939
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.)
Assertion
Ref Expression
moeq ∃*𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem moeq
StepHypRef Expression
1 isset 2769 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
2 eueq 2935 . . . 4 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2bitr3i 186 . . 3 (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴)
43biimpi 120 . 2 (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)
5 df-mo 2049 . 2 (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴))
64, 5mpbir 146 1 ∃*𝑥 𝑥 = 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1506  ∃!weu 2045  ∃*wmo 2046  wcel 2167  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  euxfr2dc  2949  reueq  2963  mosn  3658  sndisj  4029  disjxsn  4031  reusv1  4493  funopabeq  5294  funcnvsn  5303  fvmptg  5637  fvopab6  5658  ovmpt4g  6045  ovi3  6060  ov6g  6061  oprabex3  6186  1stconst  6279  2ndconst  6280  axaddf  7935  axmulf  7936
  Copyright terms: Public domain W3C validator