Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moeq | GIF version |
Description: There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
Ref | Expression |
---|---|
moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 2730 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
2 | eueq 2895 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | bitr3i 185 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃!𝑥 𝑥 = 𝐴) |
4 | 3 | biimpi 119 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴) |
5 | df-mo 2017 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 → ∃!𝑥 𝑥 = 𝐴)) | |
6 | 4, 5 | mpbir 145 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∃wex 1479 ∃!weu 2013 ∃*wmo 2014 ∈ wcel 2135 Vcvv 2724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-v 2726 |
This theorem is referenced by: euxfr2dc 2909 reueq 2923 mosn 3609 sndisj 3975 disjxsn 3977 reusv1 4433 funopabeq 5221 funcnvsn 5230 fvmptg 5559 fvopab6 5579 ovmpt4g 5958 ovi3 5972 ov6g 5973 oprabex3 6092 1stconst 6183 2ndconst 6184 axaddf 7803 axmulf 7804 |
Copyright terms: Public domain | W3C validator |