ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnneissb GIF version

Theorem opnneissb 12106
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnneissb ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnneissb
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . 7 𝑋 = 𝐽
21eltopss 11958 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝐽) → 𝑁𝑋)
32adantr 272 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁𝑋)
4 ssid 3067 . . . . . . 7 𝑁𝑁
5 sseq2 3071 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑆𝑔𝑆𝑁))
6 sseq1 3070 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑔𝑁𝑁𝑁))
75, 6anbi12d 460 . . . . . . . 8 (𝑔 = 𝑁 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑁𝑁𝑁)))
87rspcev 2744 . . . . . . 7 ((𝑁𝐽 ∧ (𝑆𝑁𝑁𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
94, 8mpanr2 432 . . . . . 6 ((𝑁𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
109ad2ant2l 495 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
111isnei 12095 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1211ad2ant2r 496 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
133, 10, 12mpbir2and 896 . . . 4 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
1413exp43 367 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑆𝑋 → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))))
15143imp 1143 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
16 ssnei 12102 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
1716ex 114 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
18173ad2ant1 970 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
1915, 18impbid 128 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 930   = wceq 1299  wcel 1448  wrex 2376  wss 3021   cuni 3683  cfv 5059  Topctop 11946  neicnei 12089
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-top 11947  df-nei 12090
This theorem is referenced by:  opnneiss  12109
  Copyright terms: Public domain W3C validator