Step | Hyp | Ref
| Expression |
1 | | neips.1 |
. . . . . . 7
β’ π = βͺ
π½ |
2 | 1 | eltopss 13594 |
. . . . . 6
β’ ((π½ β Top β§ π β π½) β π β π) |
3 | 2 | adantr 276 |
. . . . 5
β’ (((π½ β Top β§ π β π½) β§ (π β π β§ π β π)) β π β π) |
4 | | ssid 3177 |
. . . . . . 7
β’ π β π |
5 | | sseq2 3181 |
. . . . . . . . 9
β’ (π = π β (π β π β π β π)) |
6 | | sseq1 3180 |
. . . . . . . . 9
β’ (π = π β (π β π β π β π)) |
7 | 5, 6 | anbi12d 473 |
. . . . . . . 8
β’ (π = π β ((π β π β§ π β π) β (π β π β§ π β π))) |
8 | 7 | rspcev 2843 |
. . . . . . 7
β’ ((π β π½ β§ (π β π β§ π β π)) β βπ β π½ (π β π β§ π β π)) |
9 | 4, 8 | mpanr2 438 |
. . . . . 6
β’ ((π β π½ β§ π β π) β βπ β π½ (π β π β§ π β π)) |
10 | 9 | ad2ant2l 508 |
. . . . 5
β’ (((π½ β Top β§ π β π½) β§ (π β π β§ π β π)) β βπ β π½ (π β π β§ π β π)) |
11 | 1 | isnei 13729 |
. . . . . 6
β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
12 | 11 | ad2ant2r 509 |
. . . . 5
β’ (((π½ β Top β§ π β π½) β§ (π β π β§ π β π)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
13 | 3, 10, 12 | mpbir2and 944 |
. . . 4
β’ (((π½ β Top β§ π β π½) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |
14 | 13 | exp43 372 |
. . 3
β’ (π½ β Top β (π β π½ β (π β π β (π β π β π β ((neiβπ½)βπ))))) |
15 | 14 | 3imp 1193 |
. 2
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β π β π β ((neiβπ½)βπ))) |
16 | | ssnei 13736 |
. . . 4
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π) |
17 | 16 | ex 115 |
. . 3
β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π)) |
18 | 17 | 3ad2ant1 1018 |
. 2
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β ((neiβπ½)βπ) β π β π)) |
19 | 15, 18 | impbid 129 |
1
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β π β π β ((neiβπ½)βπ))) |