Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op1steq | GIF version |
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
op1steq | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 4712 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
2 | 1 | sseli 3138 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
3 | eqid 2165 | . . . . . 6 ⊢ (2nd ‘𝐴) = (2nd ‘𝐴) | |
4 | eqopi 6140 | . . . . . 6 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = (2nd ‘𝐴))) → 𝐴 = 〈𝐵, (2nd ‘𝐴)〉) | |
5 | 3, 4 | mpanr2 435 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → 𝐴 = 〈𝐵, (2nd ‘𝐴)〉) |
6 | 2ndexg 6136 | . . . . . . 7 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) ∈ V) | |
7 | opeq2 3759 | . . . . . . . . 9 ⊢ (𝑥 = (2nd ‘𝐴) → 〈𝐵, 𝑥〉 = 〈𝐵, (2nd ‘𝐴)〉) | |
8 | 7 | eqeq2d 2177 | . . . . . . . 8 ⊢ (𝑥 = (2nd ‘𝐴) → (𝐴 = 〈𝐵, 𝑥〉 ↔ 𝐴 = 〈𝐵, (2nd ‘𝐴)〉)) |
9 | 8 | spcegv 2814 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ V → (𝐴 = 〈𝐵, (2nd ‘𝐴)〉 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
10 | 6, 9 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, (2nd ‘𝐴)〉 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
11 | 10 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → (𝐴 = 〈𝐵, (2nd ‘𝐴)〉 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
12 | 5, 11 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉) |
13 | 12 | ex 114 | . . 3 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
14 | eqop 6145 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝑥〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥))) | |
15 | simpl 108 | . . . . 5 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥) → (1st ‘𝐴) = 𝐵) | |
16 | 14, 15 | syl6bi 162 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝑥〉 → (1st ‘𝐴) = 𝐵)) |
17 | 16 | exlimdv 1807 | . . 3 ⊢ (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = 〈𝐵, 𝑥〉 → (1st ‘𝐴) = 𝐵)) |
18 | 13, 17 | impbid 128 | . 2 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
19 | 2, 18 | syl 14 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 〈cop 3579 × cxp 4602 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: releldm2 6153 |
Copyright terms: Public domain | W3C validator |