![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op1steq | GIF version |
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
op1steq | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 4736 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
2 | 1 | sseli 3153 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
3 | eqid 2177 | . . . . . 6 ⊢ (2nd ‘𝐴) = (2nd ‘𝐴) | |
4 | eqopi 6175 | . . . . . 6 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = (2nd ‘𝐴))) → 𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩) | |
5 | 3, 4 | mpanr2 438 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → 𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩) |
6 | 2ndexg 6171 | . . . . . . 7 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) ∈ V) | |
7 | opeq2 3781 | . . . . . . . . 9 ⊢ (𝑥 = (2nd ‘𝐴) → ⟨𝐵, 𝑥⟩ = ⟨𝐵, (2nd ‘𝐴)⟩) | |
8 | 7 | eqeq2d 2189 | . . . . . . . 8 ⊢ (𝑥 = (2nd ‘𝐴) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩)) |
9 | 8 | spcegv 2827 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ V → (𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
10 | 6, 9 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → (𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
12 | 5, 11 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩) |
13 | 12 | ex 115 | . . 3 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
14 | eqop 6180 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥))) | |
15 | simpl 109 | . . . . 5 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥) → (1st ‘𝐴) = 𝐵) | |
16 | 14, 15 | biimtrdi 163 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ → (1st ‘𝐴) = 𝐵)) |
17 | 16 | exlimdv 1819 | . . 3 ⊢ (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩ → (1st ‘𝐴) = 𝐵)) |
18 | 13, 17 | impbid 129 | . 2 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
19 | 2, 18 | syl 14 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 × cxp 4626 ‘cfv 5218 1st c1st 6141 2nd c2nd 6142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: releldm2 6188 |
Copyright terms: Public domain | W3C validator |