| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1steq | GIF version | ||
| Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| op1steq | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4771 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
| 2 | 1 | sseli 3179 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
| 3 | eqid 2196 | . . . . . 6 ⊢ (2nd ‘𝐴) = (2nd ‘𝐴) | |
| 4 | eqopi 6230 | . . . . . 6 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = (2nd ‘𝐴))) → 𝐴 = 〈𝐵, (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | mpanr2 438 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → 𝐴 = 〈𝐵, (2nd ‘𝐴)〉) |
| 6 | 2ndexg 6226 | . . . . . . 7 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) ∈ V) | |
| 7 | opeq2 3809 | . . . . . . . . 9 ⊢ (𝑥 = (2nd ‘𝐴) → 〈𝐵, 𝑥〉 = 〈𝐵, (2nd ‘𝐴)〉) | |
| 8 | 7 | eqeq2d 2208 | . . . . . . . 8 ⊢ (𝑥 = (2nd ‘𝐴) → (𝐴 = 〈𝐵, 𝑥〉 ↔ 𝐴 = 〈𝐵, (2nd ‘𝐴)〉)) |
| 9 | 8 | spcegv 2852 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ V → (𝐴 = 〈𝐵, (2nd ‘𝐴)〉 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 10 | 6, 9 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, (2nd ‘𝐴)〉 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → (𝐴 = 〈𝐵, (2nd ‘𝐴)〉 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 12 | 5, 11 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉) |
| 13 | 12 | ex 115 | . . 3 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 14 | eqop 6235 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝑥〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥))) | |
| 15 | simpl 109 | . . . . 5 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥) → (1st ‘𝐴) = 𝐵) | |
| 16 | 14, 15 | biimtrdi 163 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝑥〉 → (1st ‘𝐴) = 𝐵)) |
| 17 | 16 | exlimdv 1833 | . . 3 ⊢ (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = 〈𝐵, 𝑥〉 → (1st ‘𝐴) = 𝐵)) |
| 18 | 13, 17 | impbid 129 | . 2 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 19 | 2, 18 | syl 14 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 〈cop 3625 × cxp 4661 ‘cfv 5258 1st c1st 6196 2nd c2nd 6197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-1st 6198 df-2nd 6199 |
| This theorem is referenced by: releldm2 6243 |
| Copyright terms: Public domain | W3C validator |