ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1steq GIF version

Theorem op1steq 6237
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
op1steq (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem op1steq
StepHypRef Expression
1 xpss 4771 . . 3 (𝑉 × 𝑊) ⊆ (V × V)
21sseli 3179 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
3 eqid 2196 . . . . . 6 (2nd𝐴) = (2nd𝐴)
4 eqopi 6230 . . . . . 6 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = (2nd𝐴))) → 𝐴 = ⟨𝐵, (2nd𝐴)⟩)
53, 4mpanr2 438 . . . . 5 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → 𝐴 = ⟨𝐵, (2nd𝐴)⟩)
6 2ndexg 6226 . . . . . . 7 (𝐴 ∈ (V × V) → (2nd𝐴) ∈ V)
7 opeq2 3809 . . . . . . . . 9 (𝑥 = (2nd𝐴) → ⟨𝐵, 𝑥⟩ = ⟨𝐵, (2nd𝐴)⟩)
87eqeq2d 2208 . . . . . . . 8 (𝑥 = (2nd𝐴) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝐵, (2nd𝐴)⟩))
98spcegv 2852 . . . . . . 7 ((2nd𝐴) ∈ V → (𝐴 = ⟨𝐵, (2nd𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
106, 9syl 14 . . . . . 6 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, (2nd𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
1110adantr 276 . . . . 5 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → (𝐴 = ⟨𝐵, (2nd𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
125, 11mpd 13 . . . 4 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)
1312ex 115 . . 3 (𝐴 ∈ (V × V) → ((1st𝐴) = 𝐵 → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
14 eqop 6235 . . . . 5 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝑥)))
15 simpl 109 . . . . 5 (((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝑥) → (1st𝐴) = 𝐵)
1614, 15biimtrdi 163 . . . 4 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ → (1st𝐴) = 𝐵))
1716exlimdv 1833 . . 3 (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩ → (1st𝐴) = 𝐵))
1813, 17impbid 129 . 2 (𝐴 ∈ (V × V) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
192, 18syl 14 1 (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  cop 3625   × cxp 4661  cfv 5258  1st c1st 6196  2nd c2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-1st 6198  df-2nd 6199
This theorem is referenced by:  releldm2  6243
  Copyright terms: Public domain W3C validator