ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addltmul GIF version

Theorem addltmul 8588
Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
Assertion
Ref Expression
addltmul (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmul
StepHypRef Expression
1 2re 8430 . . . . . . 7 2 ∈ ℝ
2 1re 7434 . . . . . . 7 1 ∈ ℝ
3 ltsub1 7883 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
41, 2, 3mp3an13 1262 . . . . . 6 (𝐴 ∈ ℝ → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
5 2m1e1 8477 . . . . . . 7 (2 − 1) = 1
65breq1i 3829 . . . . . 6 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
74, 6syl6bb 194 . . . . 5 (𝐴 ∈ ℝ → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
8 ltsub1 7883 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
91, 2, 8mp3an13 1262 . . . . . 6 (𝐵 ∈ ℝ → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
105breq1i 3829 . . . . . 6 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
119, 10syl6bb 194 . . . . 5 (𝐵 ∈ ℝ → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
127, 11bi2anan9 571 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) ↔ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
13 peano2rem 7696 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
14 peano2rem 7696 . . . . 5 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
15 mulgt1 8262 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
1615ex 113 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
1713, 14, 16syl2an 283 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
1812, 17sylbid 148 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
19 recn 7422 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
20 recn 7422 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
21 ax-1cn 7385 . . . . . . 7 1 ∈ ℂ
22 mulsub 7826 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2321, 22mpanl2 426 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2421, 23mpanr2 429 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2519, 20, 24syl2an 283 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2625breq2d 3834 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
27 1t1e1 8505 . . . . . . 7 (1 · 1) = 1
2827oveq2i 5626 . . . . . 6 ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1)
2928breq2i 3830 . . . . 5 ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1))
30 remulcl 7417 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 · 1) ∈ ℝ)
312, 30mpan2 416 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) ∈ ℝ)
32 remulcl 7417 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 · 1) ∈ ℝ)
332, 32mpan2 416 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) ∈ ℝ)
34 readdcl 7415 . . . . . . 7 (((𝐴 · 1) ∈ ℝ ∧ (𝐵 · 1) ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ)
3531, 33, 34syl2an 283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ)
36 remulcl 7417 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
372, 2remulcli 7449 . . . . . . 7 (1 · 1) ∈ ℝ
38 readdcl 7415 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ (1 · 1) ∈ ℝ) → ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ)
3936, 37, 38sylancl 404 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ)
40 ltaddsub2 7862 . . . . . . 7 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
412, 40mp3an2 1259 . . . . . 6 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4235, 39, 41syl2anc 403 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4329, 42syl5rbbr 193 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
44 ltadd1 7854 . . . . . . 7 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
452, 44mp3an3 1260 . . . . . 6 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
4635, 36, 45syl2anc 403 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
47 ax-1rid 7399 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
48 ax-1rid 7399 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
4947, 48oveqan12d 5634 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
5049breq1d 3832 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5146, 50bitr3d 188 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5226, 43, 513bitrd 212 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5318, 52sylibd 147 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5453imp 122 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436   class class class wbr 3822  (class class class)co 5615  cc 7295  cr 7296  1c1 7298   + caddc 7300   · cmul 7302   < clt 7469  cmin 7600  2c2 8410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-lttrn 7406  ax-pre-ltadd 7408  ax-pre-mulgt0 7409
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-iota 4948  df-fun 4985  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-pnf 7471  df-mnf 7472  df-ltxr 7474  df-sub 7602  df-neg 7603  df-2 8419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator