ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addltmul GIF version

Theorem addltmul 8980
Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
Assertion
Ref Expression
addltmul (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmul
StepHypRef Expression
1 2re 8814 . . . . . . 7 2 ∈ ℝ
2 1re 7789 . . . . . . 7 1 ∈ ℝ
3 ltsub1 8244 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
41, 2, 3mp3an13 1307 . . . . . 6 (𝐴 ∈ ℝ → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
5 2m1e1 8862 . . . . . . 7 (2 − 1) = 1
65breq1i 3944 . . . . . 6 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
74, 6syl6bb 195 . . . . 5 (𝐴 ∈ ℝ → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
8 ltsub1 8244 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
91, 2, 8mp3an13 1307 . . . . . 6 (𝐵 ∈ ℝ → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
105breq1i 3944 . . . . . 6 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
119, 10syl6bb 195 . . . . 5 (𝐵 ∈ ℝ → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
127, 11bi2anan9 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) ↔ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
13 peano2rem 8053 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
14 peano2rem 8053 . . . . 5 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
15 mulgt1 8645 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
1615ex 114 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
1713, 14, 16syl2an 287 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
1812, 17sylbid 149 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
19 recn 7777 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
20 recn 7777 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
21 ax-1cn 7737 . . . . . . 7 1 ∈ ℂ
22 mulsub 8187 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2321, 22mpanl2 432 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2421, 23mpanr2 435 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2519, 20, 24syl2an 287 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2625breq2d 3949 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
27 remulcl 7772 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 · 1) ∈ ℝ)
282, 27mpan2 422 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) ∈ ℝ)
29 remulcl 7772 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 · 1) ∈ ℝ)
302, 29mpan2 422 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) ∈ ℝ)
31 readdcl 7770 . . . . . . 7 (((𝐴 · 1) ∈ ℝ ∧ (𝐵 · 1) ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ)
3228, 30, 31syl2an 287 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ)
33 remulcl 7772 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
342, 2remulcli 7804 . . . . . . 7 (1 · 1) ∈ ℝ
35 readdcl 7770 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ (1 · 1) ∈ ℝ) → ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ)
3633, 34, 35sylancl 410 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ)
37 ltaddsub2 8223 . . . . . . 7 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
382, 37mp3an2 1304 . . . . . 6 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
3932, 36, 38syl2anc 409 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
40 1t1e1 8896 . . . . . . 7 (1 · 1) = 1
4140oveq2i 5793 . . . . . 6 ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1)
4241breq2i 3945 . . . . 5 ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1))
4339, 42bitr3di 194 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
44 ltadd1 8215 . . . . . . 7 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
452, 44mp3an3 1305 . . . . . 6 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
4632, 33, 45syl2anc 409 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
47 ax-1rid 7751 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
48 ax-1rid 7751 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
4947, 48oveqan12d 5801 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
5049breq1d 3947 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5146, 50bitr3d 189 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5226, 43, 513bitrd 213 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5318, 52sylibd 148 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5453imp 123 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481   class class class wbr 3937  (class class class)co 5782  cc 7642  cr 7643  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824  cmin 7957  2c2 8795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-lttrn 7758  ax-pre-ltadd 7760  ax-pre-mulgt0 7761
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-ltxr 7829  df-sub 7959  df-neg 7960  df-2 8803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator