Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divdivap1 | GIF version |
Description: Division into a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.) |
Ref | Expression |
---|---|
divdivap1 | ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7867 | . . . . 5 ⊢ 1 ∈ ℂ | |
2 | 1ap0 8509 | . . . . 5 ⊢ 1 # 0 | |
3 | 1, 2 | pm3.2i 270 | . . . 4 ⊢ (1 ∈ ℂ ∧ 1 # 0) |
4 | divdivdivap 8630 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (1 ∈ ℂ ∧ 1 # 0))) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) | |
5 | 3, 4 | mpanr2 436 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) |
6 | 5 | 3impa 1189 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) |
7 | div1 8620 | . . . . 5 ⊢ (𝐶 ∈ ℂ → (𝐶 / 1) = 𝐶) | |
8 | 7 | oveq2d 5869 | . . . 4 ⊢ (𝐶 ∈ ℂ → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
9 | 8 | ad2antrl 487 | . . 3 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
10 | 9 | 3adant1 1010 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
11 | mulid1 7917 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
12 | 11 | oveq1d 5868 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶))) |
13 | 12 | 3ad2ant1 1013 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶))) |
14 | 6, 10, 13 | 3eqtr3d 2211 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 · cmul 7779 # cap 8500 / cdiv 8589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 |
This theorem is referenced by: recdivap2 8642 divdivap1d 8739 sin01bnd 11720 |
Copyright terms: Public domain | W3C validator |