ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fpmg GIF version

Theorem fpmg 6674
Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
fpmg ((𝐴𝑉𝐵𝑊𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))

Proof of Theorem fpmg
StepHypRef Expression
1 ssid 3176 . . . 4 𝐴𝐴
2 elpm2r 6666 . . . 4 (((𝐵𝑊𝐴𝑉) ∧ (𝐹:𝐴𝐵𝐴𝐴)) → 𝐹 ∈ (𝐵pm 𝐴))
31, 2mpanr2 438 . . 3 (((𝐵𝑊𝐴𝑉) ∧ 𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
433impa 1194 . 2 ((𝐵𝑊𝐴𝑉𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
543com12 1207 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wcel 2148  wss 3130  wf 5213  (class class class)co 5875  pm cpm 6649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pm 6651
This theorem is referenced by:  fpm  6681  mapsspm  6682  dvef  14191
  Copyright terms: Public domain W3C validator