Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsradd GIF version

 Description: Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsradd ((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))

Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7457 . . . 4 1PP
2 addclpr 7440 . . . 4 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
31, 2mpan2 422 . . 3 (𝐴P → (𝐴 +P 1P) ∈ P)
4 addclpr 7440 . . . 4 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
51, 4mpan2 422 . . 3 (𝐵P → (𝐵 +P 1P) ∈ P)
6 addsrpr 7648 . . . . 5 ((((𝐴 +P 1P) ∈ P ∧ 1PP) ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
71, 6mpanl2 432 . . . 4 (((𝐴 +P 1P) ∈ P ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
81, 7mpanr2 435 . . 3 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
93, 5, 8syl2an 287 . 2 ((𝐴P𝐵P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
10 simpl 108 . . . . . . 7 ((𝐴P𝐵P) → 𝐴P)
111a1i 9 . . . . . . 7 ((𝐴P𝐵P) → 1PP)
12 simpr 109 . . . . . . 7 ((𝐴P𝐵P) → 𝐵P)
13 addcomprg 7481 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1413adantl 275 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
15 addassprg 7482 . . . . . . . 8 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
1615adantl 275 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
17 addclpr 7440 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
1817adantl 275 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
1910, 11, 12, 14, 16, 11, 18caov4d 5999 . . . . . 6 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) = ((𝐴 +P 𝐵) +P (1P +P 1P)))
20 addclpr 7440 . . . . . . 7 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
21 addclpr 7440 . . . . . . . . 9 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
221, 1, 21mp2an 423 . . . . . . . 8 (1P +P 1P) ∈ P
2322a1i 9 . . . . . . 7 ((𝐴P𝐵P) → (1P +P 1P) ∈ P)
24 addcomprg 7481 . . . . . . 7 (((𝐴 +P 𝐵) ∈ P ∧ (1P +P 1P) ∈ P) → ((𝐴 +P 𝐵) +P (1P +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2520, 23, 24syl2anc 409 . . . . . 6 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) +P (1P +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2619, 25eqtrd 2190 . . . . 5 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2726oveq1d 5833 . . . 4 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P))
28 addassprg 7482 . . . . 5 (((1P +P 1P) ∈ P ∧ (𝐴 +P 𝐵) ∈ P ∧ 1PP) → (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
2923, 20, 11, 28syl3anc 1220 . . . 4 ((𝐴P𝐵P) → (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
3027, 29eqtrd 2190 . . 3 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
31 addclpr 7440 . . . . 5 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
323, 5, 31syl2an 287 . . . 4 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
33 addclpr 7440 . . . . 5 (((𝐴 +P 𝐵) ∈ P ∧ 1PP) → ((𝐴 +P 𝐵) +P 1P) ∈ P)
3420, 11, 33syl2anc 409 . . . 4 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) +P 1P) ∈ P)
35 enreceq 7639 . . . . . 6 (((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ (1P +P 1P) ∈ P) ∧ (((𝐴 +P 𝐵) +P 1P) ∈ P ∧ 1PP)) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
361, 35mpanr2 435 . . . . 5 (((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((𝐴 +P 𝐵) +P 1P) ∈ P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3722, 36mpanl2 432 . . . 4 ((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ ((𝐴 +P 𝐵) +P 1P) ∈ P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3832, 34, 37syl2anc 409 . . 3 ((𝐴P𝐵P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3930, 38mpbird 166 . 2 ((𝐴P𝐵P) → [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R )
409, 39eqtr2d 2191 1 ((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1335   ∈ wcel 2128  ⟨cop 3563  (class class class)co 5818  [cec 6471  Pcnp 7194  1Pc1p 7195   +P cpp 7196   ~R cer 7199   +R cplr 7204 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4248  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-1o 6357  df-2o 6358  df-oadd 6361  df-omul 6362  df-er 6473  df-ec 6475  df-qs 6479  df-ni 7207  df-pli 7208  df-mi 7209  df-lti 7210  df-plpq 7247  df-mpq 7248  df-enq 7250  df-nqqs 7251  df-plqqs 7252  df-mqqs 7253  df-1nqqs 7254  df-rq 7255  df-ltnqqs 7256  df-enq0 7327  df-nq0 7328  df-0nq0 7329  df-plq0 7330  df-mq0 7331  df-inp 7369  df-i1p 7370  df-iplp 7371  df-enr 7629  df-nr 7630  df-plr 7631 This theorem is referenced by:  caucvgsrlemcau  7696  caucvgsrlemgt1  7698
 Copyright terms: Public domain W3C validator