Step | Hyp | Ref
| Expression |
1 | | 1pr 7457 |
. . . 4
⊢
1P ∈ P |
2 | | addclpr 7440 |
. . . 4
⊢ ((𝐴 ∈ P ∧
1P ∈ P) → (𝐴 +P
1P) ∈ P) |
3 | 1, 2 | mpan2 422 |
. . 3
⊢ (𝐴 ∈ P →
(𝐴
+P 1P) ∈
P) |
4 | | addclpr 7440 |
. . . 4
⊢ ((𝐵 ∈ P ∧
1P ∈ P) → (𝐵 +P
1P) ∈ P) |
5 | 1, 4 | mpan2 422 |
. . 3
⊢ (𝐵 ∈ P →
(𝐵
+P 1P) ∈
P) |
6 | | addsrpr 7648 |
. . . . 5
⊢ ((((𝐴 +P
1P) ∈ P ∧
1P ∈ P) ∧ ((𝐵 +P
1P) ∈ P ∧
1P ∈ P)) → ([〈(𝐴 +P
1P), 1P〉]
~R +R [〈(𝐵 +P
1P), 1P〉]
~R ) = [〈((𝐴 +P
1P) +P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R ) |
7 | 1, 6 | mpanl2 432 |
. . . 4
⊢ (((𝐴 +P
1P) ∈ P ∧ ((𝐵 +P
1P) ∈ P ∧
1P ∈ P)) → ([〈(𝐴 +P
1P), 1P〉]
~R +R [〈(𝐵 +P
1P), 1P〉]
~R ) = [〈((𝐴 +P
1P) +P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R ) |
8 | 1, 7 | mpanr2 435 |
. . 3
⊢ (((𝐴 +P
1P) ∈ P ∧ (𝐵 +P
1P) ∈ P) → ([〈(𝐴 +P
1P), 1P〉]
~R +R [〈(𝐵 +P
1P), 1P〉]
~R ) = [〈((𝐴 +P
1P) +P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R ) |
9 | 3, 5, 8 | syl2an 287 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ([〈(𝐴
+P 1P),
1P〉] ~R
+R [〈(𝐵 +P
1P), 1P〉]
~R ) = [〈((𝐴 +P
1P) +P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R ) |
10 | | simpl 108 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ 𝐴 ∈
P) |
11 | 1 | a1i 9 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ 1P ∈ P) |
12 | | simpr 109 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ 𝐵 ∈
P) |
13 | | addcomprg 7481 |
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
14 | 13 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
P ∧ 𝑔
∈ P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓)) |
15 | | addassprg 7482 |
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → ((𝑓
+P 𝑔) +P ℎ) = (𝑓 +P (𝑔 +P
ℎ))) |
16 | 15 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
P ∧ 𝑔
∈ P ∧ ℎ ∈ P)) → ((𝑓 +P
𝑔)
+P ℎ) = (𝑓 +P (𝑔 +P
ℎ))) |
17 | | addclpr 7440 |
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) ∈ P) |
18 | 17 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑓 ∈
P ∧ 𝑔
∈ P)) → (𝑓 +P 𝑔) ∈
P) |
19 | 10, 11, 12, 14, 16, 11, 18 | caov4d 5999 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝐴
+P 1P)
+P (𝐵 +P
1P)) = ((𝐴 +P 𝐵) +P
(1P +P
1P))) |
20 | | addclpr 7440 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝐴
+P 𝐵) ∈ P) |
21 | | addclpr 7440 |
. . . . . . . . 9
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
22 | 1, 1, 21 | mp2an 423 |
. . . . . . . 8
⊢
(1P +P
1P) ∈ P |
23 | 22 | a1i 9 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (1P +P
1P) ∈ P) |
24 | | addcomprg 7481 |
. . . . . . 7
⊢ (((𝐴 +P
𝐵) ∈ P
∧ (1P +P
1P) ∈ P) → ((𝐴 +P 𝐵) +P
(1P +P
1P)) = ((1P
+P 1P)
+P (𝐴 +P 𝐵))) |
25 | 20, 23, 24 | syl2anc 409 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝐴
+P 𝐵) +P
(1P +P
1P)) = ((1P
+P 1P)
+P (𝐴 +P 𝐵))) |
26 | 19, 25 | eqtrd 2190 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝐴
+P 1P)
+P (𝐵 +P
1P)) = ((1P
+P 1P)
+P (𝐴 +P 𝐵))) |
27 | 26 | oveq1d 5833 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (((𝐴
+P 1P)
+P (𝐵 +P
1P)) +P
1P) = (((1P
+P 1P)
+P (𝐴 +P 𝐵)) +P
1P)) |
28 | | addassprg 7482 |
. . . . 5
⊢
(((1P +P
1P) ∈ P ∧ (𝐴 +P 𝐵) ∈ P ∧
1P ∈ P) →
(((1P +P
1P) +P (𝐴 +P 𝐵)) +P
1P) = ((1P
+P 1P)
+P ((𝐴 +P 𝐵) +P
1P))) |
29 | 23, 20, 11, 28 | syl3anc 1220 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (((1P +P
1P) +P (𝐴 +P 𝐵)) +P
1P) = ((1P
+P 1P)
+P ((𝐴 +P 𝐵) +P
1P))) |
30 | 27, 29 | eqtrd 2190 |
. . 3
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (((𝐴
+P 1P)
+P (𝐵 +P
1P)) +P
1P) = ((1P
+P 1P)
+P ((𝐴 +P 𝐵) +P
1P))) |
31 | | addclpr 7440 |
. . . . 5
⊢ (((𝐴 +P
1P) ∈ P ∧ (𝐵 +P
1P) ∈ P) → ((𝐴 +P
1P) +P (𝐵 +P
1P)) ∈ P) |
32 | 3, 5, 31 | syl2an 287 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝐴
+P 1P)
+P (𝐵 +P
1P)) ∈ P) |
33 | | addclpr 7440 |
. . . . 5
⊢ (((𝐴 +P
𝐵) ∈ P
∧ 1P ∈ P) → ((𝐴 +P
𝐵)
+P 1P) ∈
P) |
34 | 20, 11, 33 | syl2anc 409 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝐴
+P 𝐵) +P
1P) ∈ P) |
35 | | enreceq 7639 |
. . . . . 6
⊢
(((((𝐴
+P 1P)
+P (𝐵 +P
1P)) ∈ P ∧
(1P +P
1P) ∈ P) ∧ (((𝐴 +P 𝐵) +P
1P) ∈ P ∧
1P ∈ P)) → ([〈((𝐴 +P
1P) +P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R = [〈((𝐴 +P 𝐵) +P
1P), 1P〉]
~R ↔ (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) = ((1P
+P 1P)
+P ((𝐴 +P 𝐵) +P
1P)))) |
36 | 1, 35 | mpanr2 435 |
. . . . 5
⊢
(((((𝐴
+P 1P)
+P (𝐵 +P
1P)) ∈ P ∧
(1P +P
1P) ∈ P) ∧ ((𝐴 +P 𝐵) +P
1P) ∈ P) → ([〈((𝐴 +P
1P) +P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R = [〈((𝐴 +P 𝐵) +P
1P), 1P〉]
~R ↔ (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) = ((1P
+P 1P)
+P ((𝐴 +P 𝐵) +P
1P)))) |
37 | 22, 36 | mpanl2 432 |
. . . 4
⊢ ((((𝐴 +P
1P) +P (𝐵 +P
1P)) ∈ P ∧ ((𝐴 +P 𝐵) +P
1P) ∈ P) → ([〈((𝐴 +P
1P) +P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R = [〈((𝐴 +P 𝐵) +P
1P), 1P〉]
~R ↔ (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) = ((1P
+P 1P)
+P ((𝐴 +P 𝐵) +P
1P)))) |
38 | 32, 34, 37 | syl2anc 409 |
. . 3
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ([〈((𝐴
+P 1P)
+P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R = [〈((𝐴 +P 𝐵) +P
1P), 1P〉]
~R ↔ (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) = ((1P
+P 1P)
+P ((𝐴 +P 𝐵) +P
1P)))) |
39 | 30, 38 | mpbird 166 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ [〈((𝐴
+P 1P)
+P (𝐵 +P
1P)), (1P
+P 1P)〉]
~R = [〈((𝐴 +P 𝐵) +P
1P), 1P〉]
~R ) |
40 | 9, 39 | eqtr2d 2191 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ [〈((𝐴
+P 𝐵) +P
1P), 1P〉]
~R = ([〈(𝐴 +P
1P), 1P〉]
~R +R [〈(𝐵 +P
1P), 1P〉]
~R )) |