ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsradd GIF version

Theorem prsradd 7961
Description: Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsradd ((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))

Proof of Theorem prsradd
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7729 . . . 4 1PP
2 addclpr 7712 . . . 4 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
31, 2mpan2 425 . . 3 (𝐴P → (𝐴 +P 1P) ∈ P)
4 addclpr 7712 . . . 4 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
51, 4mpan2 425 . . 3 (𝐵P → (𝐵 +P 1P) ∈ P)
6 addsrpr 7920 . . . . 5 ((((𝐴 +P 1P) ∈ P ∧ 1PP) ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
71, 6mpanl2 435 . . . 4 (((𝐴 +P 1P) ∈ P ∧ ((𝐵 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
81, 7mpanr2 438 . . 3 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
93, 5, 8syl2an 289 . 2 ((𝐴P𝐵P) → ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ) = [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R )
10 simpl 109 . . . . . . 7 ((𝐴P𝐵P) → 𝐴P)
111a1i 9 . . . . . . 7 ((𝐴P𝐵P) → 1PP)
12 simpr 110 . . . . . . 7 ((𝐴P𝐵P) → 𝐵P)
13 addcomprg 7753 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1413adantl 277 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
15 addassprg 7754 . . . . . . . 8 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
1615adantl 277 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
17 addclpr 7712 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
1817adantl 277 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
1910, 11, 12, 14, 16, 11, 18caov4d 6181 . . . . . 6 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) = ((𝐴 +P 𝐵) +P (1P +P 1P)))
20 addclpr 7712 . . . . . . 7 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
21 addclpr 7712 . . . . . . . . 9 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
221, 1, 21mp2an 426 . . . . . . . 8 (1P +P 1P) ∈ P
2322a1i 9 . . . . . . 7 ((𝐴P𝐵P) → (1P +P 1P) ∈ P)
24 addcomprg 7753 . . . . . . 7 (((𝐴 +P 𝐵) ∈ P ∧ (1P +P 1P) ∈ P) → ((𝐴 +P 𝐵) +P (1P +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2520, 23, 24syl2anc 411 . . . . . 6 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) +P (1P +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2619, 25eqtrd 2262 . . . . 5 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) = ((1P +P 1P) +P (𝐴 +P 𝐵)))
2726oveq1d 6009 . . . 4 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P))
28 addassprg 7754 . . . . 5 (((1P +P 1P) ∈ P ∧ (𝐴 +P 𝐵) ∈ P ∧ 1PP) → (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
2923, 20, 11, 28syl3anc 1271 . . . 4 ((𝐴P𝐵P) → (((1P +P 1P) +P (𝐴 +P 𝐵)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
3027, 29eqtrd 2262 . . 3 ((𝐴P𝐵P) → (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P)))
31 addclpr 7712 . . . . 5 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
323, 5, 31syl2an 289 . . . 4 ((𝐴P𝐵P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
33 addclpr 7712 . . . . 5 (((𝐴 +P 𝐵) ∈ P ∧ 1PP) → ((𝐴 +P 𝐵) +P 1P) ∈ P)
3420, 11, 33syl2anc 411 . . . 4 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) +P 1P) ∈ P)
35 enreceq 7911 . . . . . 6 (((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ (1P +P 1P) ∈ P) ∧ (((𝐴 +P 𝐵) +P 1P) ∈ P ∧ 1PP)) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
361, 35mpanr2 438 . . . . 5 (((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((𝐴 +P 𝐵) +P 1P) ∈ P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3722, 36mpanl2 435 . . . 4 ((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ ((𝐴 +P 𝐵) +P 1P) ∈ P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3832, 34, 37syl2anc 411 . . 3 ((𝐴P𝐵P) → ([⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R ↔ (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) = ((1P +P 1P) +P ((𝐴 +P 𝐵) +P 1P))))
3930, 38mpbird 167 . 2 ((𝐴P𝐵P) → [⟨((𝐴 +P 1P) +P (𝐵 +P 1P)), (1P +P 1P)⟩] ~R = [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R )
409, 39eqtr2d 2263 1 ((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cop 3669  (class class class)co 5994  [cec 6668  Pcnp 7466  1Pc1p 7467   +P cpp 7468   ~R cer 7471   +R cplr 7476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-i1p 7642  df-iplp 7643  df-enr 7901  df-nr 7902  df-plr 7903
This theorem is referenced by:  caucvgsrlemcau  7968  caucvgsrlemgt1  7970
  Copyright terms: Public domain W3C validator