| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > blssec | GIF version | ||
| Description: A ball centered at 𝑃 is contained in the set of points finitely separated from 𝑃. This is just an application of ssbl 15108 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
| Ref | Expression |
|---|---|
| blssec | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfge 9993 | . . . . 5 ⊢ (𝑆 ∈ ℝ* → 𝑆 ≤ +∞) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → 𝑆 ≤ +∞) |
| 3 | pnfxr 8207 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 4 | ssbl 15108 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝑆 ≤ +∞) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) | |
| 5 | 4 | 3expia 1229 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*)) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))) |
| 6 | 3, 5 | mpanr2 438 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))) |
| 7 | 2, 6 | mpd 13 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) |
| 8 | 7 | 3impa 1218 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) |
| 9 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
| 10 | 9 | xmetec 15119 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| 11 | 10 | 3adant3 1041 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| 12 | 8, 11 | sseqtrrd 3263 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 class class class wbr 4083 ◡ccnv 4718 “ cima 4722 ‘cfv 5318 (class class class)co 6007 [cec 6686 ℝcr 8006 +∞cpnf 8186 ℝ*cxr 8188 ≤ cle 8190 ∞Metcxmet 14508 ballcbl 14510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-ec 6690 df-map 6805 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-2 9177 df-xneg 9976 df-xadd 9977 df-psmet 14515 df-xmet 14516 df-bl 14518 |
| This theorem is referenced by: xmetresbl 15122 |
| Copyright terms: Public domain | W3C validator |