| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > blssec | GIF version | ||
| Description: A ball centered at 𝑃 is contained in the set of points finitely separated from 𝑃. This is just an application of ssbl 14942 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
| Ref | Expression |
|---|---|
| blssec | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfge 9918 | . . . . 5 ⊢ (𝑆 ∈ ℝ* → 𝑆 ≤ +∞) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → 𝑆 ≤ +∞) |
| 3 | pnfxr 8132 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 4 | ssbl 14942 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝑆 ≤ +∞) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) | |
| 5 | 4 | 3expia 1208 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*)) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))) |
| 6 | 3, 5 | mpanr2 438 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))) |
| 7 | 2, 6 | mpd 13 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) |
| 8 | 7 | 3impa 1197 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) |
| 9 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
| 10 | 9 | xmetec 14953 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| 11 | 10 | 3adant3 1020 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
| 12 | 8, 11 | sseqtrrd 3233 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ⊆ wss 3167 class class class wbr 4047 ◡ccnv 4678 “ cima 4682 ‘cfv 5276 (class class class)co 5951 [cec 6625 ℝcr 7931 +∞cpnf 8111 ℝ*cxr 8113 ≤ cle 8115 ∞Metcxmet 14342 ballcbl 14344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-ec 6629 df-map 6744 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-2 9102 df-xneg 9901 df-xadd 9902 df-psmet 14349 df-xmet 14350 df-bl 14352 |
| This theorem is referenced by: xmetresbl 14956 |
| Copyright terms: Public domain | W3C validator |