ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiinbas GIF version

Theorem fiinbas 12841
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fiinbas ((𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem fiinbas
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3167 . . . . . . . 8 (𝑥𝑦) ⊆ (𝑥𝑦)
2 eleq2 2234 . . . . . . . . . 10 (𝑤 = (𝑥𝑦) → (𝑧𝑤𝑧 ∈ (𝑥𝑦)))
3 sseq1 3170 . . . . . . . . . 10 (𝑤 = (𝑥𝑦) → (𝑤 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
42, 3anbi12d 470 . . . . . . . . 9 (𝑤 = (𝑥𝑦) → ((𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))))
54rspcev 2834 . . . . . . . 8 (((𝑥𝑦) ∈ 𝐵 ∧ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
61, 5mpanr2 436 . . . . . . 7 (((𝑥𝑦) ∈ 𝐵𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
76ralrimiva 2543 . . . . . 6 ((𝑥𝑦) ∈ 𝐵 → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
87a1i 9 . . . . 5 (𝐵𝐶 → ((𝑥𝑦) ∈ 𝐵 → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
98ralimdv 2538 . . . 4 (𝐵𝐶 → (∀𝑦𝐵 (𝑥𝑦) ∈ 𝐵 → ∀𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
109ralimdv 2538 . . 3 (𝐵𝐶 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵 → ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
11 isbasis2g 12837 . . 3 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1210, 11sylibrd 168 . 2 (𝐵𝐶 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵𝐵 ∈ TopBases))
1312imp 123 1 ((𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449  cin 3120  wss 3121  TopBasesctb 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797  df-bases 12835
This theorem is referenced by:  qtopbasss  13315
  Copyright terms: Public domain W3C validator