| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difsn | GIF version | ||
| Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| difsn | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 3760 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴)) | |
| 2 | simpl 109 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) → 𝑥 ∈ 𝐵) | |
| 3 | eleq1 2268 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | 3 | biimpcd 159 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
| 5 | 4 | necon3bd 2419 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐵 → 𝑥 ≠ 𝐴)) |
| 6 | 5 | com12 30 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ≠ 𝐴)) |
| 7 | 6 | ancld 325 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴))) |
| 8 | 2, 7 | impbid2 143 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) ↔ 𝑥 ∈ 𝐵)) |
| 9 | 1, 8 | bitrid 192 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥 ∈ 𝐵)) |
| 10 | 9 | eqrdv 2203 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ∖ cdif 3163 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-dif 3168 df-sn 3639 |
| This theorem is referenced by: difsnb 3776 fisseneq 7031 dfn2 9308 |
| Copyright terms: Public domain | W3C validator |