![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difsn | GIF version |
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
difsn | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 3734 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴)) | |
2 | simpl 109 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) → 𝑥 ∈ 𝐵) | |
3 | eleq1 2252 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
4 | 3 | biimpcd 159 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
5 | 4 | necon3bd 2403 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐵 → 𝑥 ≠ 𝐴)) |
6 | 5 | com12 30 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ≠ 𝐴)) |
7 | 6 | ancld 325 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴))) |
8 | 2, 7 | impbid2 143 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) ↔ 𝑥 ∈ 𝐵)) |
9 | 1, 8 | bitrid 192 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥 ∈ 𝐵)) |
10 | 9 | eqrdv 2187 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 ∖ cdif 3141 {csn 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-v 2754 df-dif 3146 df-sn 3613 |
This theorem is referenced by: difsnb 3750 fisseneq 6960 dfn2 9219 |
Copyright terms: Public domain | W3C validator |