Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjne | GIF version |
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
disjne | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 3457 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
2 | eleq1 2229 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
3 | 2 | notbid 657 | . . . . 5 ⊢ (𝑥 = 𝐶 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝐶 ∈ 𝐵)) |
4 | 3 | rspccva 2829 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
5 | eleq1a 2238 | . . . . 5 ⊢ (𝐷 ∈ 𝐵 → (𝐶 = 𝐷 → 𝐶 ∈ 𝐵)) | |
6 | 5 | necon3bd 2379 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → (¬ 𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
7 | 4, 6 | syl5com 29 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
8 | 1, 7 | sylanb 282 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
9 | 8 | 3impia 1190 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∩ cin 3115 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-nul 3410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |