ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjne GIF version

Theorem disjne 3500
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjne (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)

Proof of Theorem disjne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disj 3495 . . 3 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 eleq1 2256 . . . . . 6 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
32notbid 668 . . . . 5 (𝑥 = 𝐶 → (¬ 𝑥𝐵 ↔ ¬ 𝐶𝐵))
43rspccva 2863 . . . 4 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → ¬ 𝐶𝐵)
5 eleq1a 2265 . . . . 5 (𝐷𝐵 → (𝐶 = 𝐷𝐶𝐵))
65necon3bd 2407 . . . 4 (𝐷𝐵 → (¬ 𝐶𝐵𝐶𝐷))
74, 6syl5com 29 . . 3 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → (𝐷𝐵𝐶𝐷))
81, 7sylanb 284 . 2 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → (𝐷𝐵𝐶𝐷))
983impia 1202 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wne 2364  wral 2472  cin 3152  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-v 2762  df-dif 3155  df-in 3159  df-nul 3447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator