ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjne GIF version

Theorem disjne 3478
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjne (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)

Proof of Theorem disjne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disj 3473 . . 3 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 eleq1 2240 . . . . . 6 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
32notbid 667 . . . . 5 (𝑥 = 𝐶 → (¬ 𝑥𝐵 ↔ ¬ 𝐶𝐵))
43rspccva 2842 . . . 4 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → ¬ 𝐶𝐵)
5 eleq1a 2249 . . . . 5 (𝐷𝐵 → (𝐶 = 𝐷𝐶𝐵))
65necon3bd 2390 . . . 4 (𝐷𝐵 → (¬ 𝐶𝐵𝐶𝐷))
74, 6syl5com 29 . . 3 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → (𝐷𝐵𝐶𝐷))
81, 7sylanb 284 . 2 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → (𝐷𝐵𝐶𝐷))
983impia 1200 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wne 2347  wral 2455  cin 3130  c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-v 2741  df-dif 3133  df-in 3137  df-nul 3425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator