ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjne GIF version

Theorem disjne 3336
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjne (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)

Proof of Theorem disjne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disj 3331 . . 3 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 eleq1 2150 . . . . . 6 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
32notbid 627 . . . . 5 (𝑥 = 𝐶 → (¬ 𝑥𝐵 ↔ ¬ 𝐶𝐵))
43rspccva 2721 . . . 4 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → ¬ 𝐶𝐵)
5 eleq1a 2159 . . . . 5 (𝐷𝐵 → (𝐶 = 𝐷𝐶𝐵))
65necon3bd 2298 . . . 4 (𝐷𝐵 → (¬ 𝐶𝐵𝐶𝐷))
74, 6syl5com 29 . . 3 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → (𝐷𝐵𝐶𝐷))
81, 7sylanb 278 . 2 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → (𝐷𝐵𝐶𝐷))
983impia 1140 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  w3a 924   = wceq 1289  wcel 1438  wne 2255  wral 2359  cin 2998  c0 3286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-v 2621  df-dif 3001  df-in 3005  df-nul 3287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator