| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zneo | GIF version | ||
| Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
| Ref | Expression |
|---|---|
| zneo | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnz 9451 | . . 3 ⊢ ¬ (1 / 2) ∈ ℤ | |
| 2 | 2cn 9089 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 3 | zcn 9359 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 4 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 5 | mulcl 8034 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ) | |
| 6 | 2, 4, 5 | sylancr 414 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ∈ ℂ) |
| 7 | zcn 9359 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 8 | 7 | adantl 277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ) |
| 9 | mulcl 8034 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ) | |
| 10 | 2, 8, 9 | sylancr 414 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐵) ∈ ℂ) |
| 11 | 1cnd 8070 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ) | |
| 12 | 6, 10, 11 | subaddd 8383 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 ↔ ((2 · 𝐵) + 1) = (2 · 𝐴))) |
| 13 | 2 | a1i 9 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 ∈ ℂ) |
| 14 | 13, 4, 8 | subdid 8468 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · (𝐴 − 𝐵)) = ((2 · 𝐴) − (2 · 𝐵))) |
| 15 | 14 | oveq1d 5949 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴 − 𝐵)) / 2) = (((2 · 𝐴) − (2 · 𝐵)) / 2)) |
| 16 | zsubcl 9395 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
| 17 | zcn 9359 | . . . . . . . . . 10 ⊢ ((𝐴 − 𝐵) ∈ ℤ → (𝐴 − 𝐵) ∈ ℂ) | |
| 18 | 16, 17 | syl 14 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) |
| 19 | 2ap0 9111 | . . . . . . . . . 10 ⊢ 2 # 0 | |
| 20 | 19 | a1i 9 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 # 0) |
| 21 | 18, 13, 20 | divcanap3d 8850 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴 − 𝐵)) / 2) = (𝐴 − 𝐵)) |
| 22 | 15, 21 | eqtr3d 2239 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (𝐴 − 𝐵)) |
| 23 | 22, 16 | eqeltrd 2281 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ) |
| 24 | oveq1 5941 | . . . . . . 7 ⊢ (((2 · 𝐴) − (2 · 𝐵)) = 1 → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (1 / 2)) | |
| 25 | 24 | eleq1d 2273 | . . . . . 6 ⊢ (((2 · 𝐴) − (2 · 𝐵)) = 1 → ((((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ ↔ (1 / 2) ∈ ℤ)) |
| 26 | 23, 25 | syl5ibcom 155 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 → (1 / 2) ∈ ℤ)) |
| 27 | 12, 26 | sylbird 170 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐵) + 1) = (2 · 𝐴) → (1 / 2) ∈ ℤ)) |
| 28 | 27 | necon3bd 2418 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ (1 / 2) ∈ ℤ → ((2 · 𝐵) + 1) ≠ (2 · 𝐴))) |
| 29 | 1, 28 | mpi 15 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · 𝐵) + 1) ≠ (2 · 𝐴)) |
| 30 | 29 | necomd 2461 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 class class class wbr 4043 (class class class)co 5934 ℂcc 7905 0cc0 7907 1c1 7908 + caddc 7910 · cmul 7912 − cmin 8225 # cap 8636 / cdiv 8727 2c2 9069 ℤcz 9354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-n0 9278 df-z 9355 |
| This theorem is referenced by: nneo 9458 zeo2 9461 |
| Copyright terms: Public domain | W3C validator |