![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zneo | GIF version |
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
Ref | Expression |
---|---|
zneo | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnz 8941 | . . 3 ⊢ ¬ (1 / 2) ∈ ℤ | |
2 | 2cn 8591 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
3 | zcn 8853 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | adantr 271 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ) |
5 | mulcl 7566 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ) | |
6 | 2, 4, 5 | sylancr 406 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ∈ ℂ) |
7 | zcn 8853 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
8 | 7 | adantl 272 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ) |
9 | mulcl 7566 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ) | |
10 | 2, 8, 9 | sylancr 406 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐵) ∈ ℂ) |
11 | 1cnd 7601 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ) | |
12 | 6, 10, 11 | subaddd 7908 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 ↔ ((2 · 𝐵) + 1) = (2 · 𝐴))) |
13 | 2 | a1i 9 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 ∈ ℂ) |
14 | 13, 4, 8 | subdid 7989 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · (𝐴 − 𝐵)) = ((2 · 𝐴) − (2 · 𝐵))) |
15 | 14 | oveq1d 5705 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴 − 𝐵)) / 2) = (((2 · 𝐴) − (2 · 𝐵)) / 2)) |
16 | zsubcl 8889 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
17 | zcn 8853 | . . . . . . . . . 10 ⊢ ((𝐴 − 𝐵) ∈ ℤ → (𝐴 − 𝐵) ∈ ℂ) | |
18 | 16, 17 | syl 14 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) |
19 | 2ap0 8613 | . . . . . . . . . 10 ⊢ 2 # 0 | |
20 | 19 | a1i 9 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 # 0) |
21 | 18, 13, 20 | divcanap3d 8359 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴 − 𝐵)) / 2) = (𝐴 − 𝐵)) |
22 | 15, 21 | eqtr3d 2129 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (𝐴 − 𝐵)) |
23 | 22, 16 | eqeltrd 2171 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ) |
24 | oveq1 5697 | . . . . . . 7 ⊢ (((2 · 𝐴) − (2 · 𝐵)) = 1 → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (1 / 2)) | |
25 | 24 | eleq1d 2163 | . . . . . 6 ⊢ (((2 · 𝐴) − (2 · 𝐵)) = 1 → ((((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ ↔ (1 / 2) ∈ ℤ)) |
26 | 23, 25 | syl5ibcom 154 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 → (1 / 2) ∈ ℤ)) |
27 | 12, 26 | sylbird 169 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐵) + 1) = (2 · 𝐴) → (1 / 2) ∈ ℤ)) |
28 | 27 | necon3bd 2305 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ (1 / 2) ∈ ℤ → ((2 · 𝐵) + 1) ≠ (2 · 𝐴))) |
29 | 1, 28 | mpi 15 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · 𝐵) + 1) ≠ (2 · 𝐴)) |
30 | 29 | necomd 2348 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ≠ wne 2262 class class class wbr 3867 (class class class)co 5690 ℂcc 7445 0cc0 7447 1c1 7448 + caddc 7450 · cmul 7452 − cmin 7750 # cap 8155 / cdiv 8236 2c2 8571 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-po 4147 df-iso 4148 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-2 8579 df-n0 8772 df-z 8849 |
This theorem is referenced by: nneo 8948 zeo2 8951 |
Copyright terms: Public domain | W3C validator |