Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zneo GIF version

Theorem zneo 8946
 Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
zneo ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1))

Proof of Theorem zneo
StepHypRef Expression
1 halfnz 8941 . . 3 ¬ (1 / 2) ∈ ℤ
2 2cn 8591 . . . . . . 7 2 ∈ ℂ
3 zcn 8853 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
43adantr 271 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ)
5 mulcl 7566 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
62, 4, 5sylancr 406 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ∈ ℂ)
7 zcn 8853 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
87adantl 272 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
9 mulcl 7566 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ)
102, 8, 9sylancr 406 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐵) ∈ ℂ)
11 1cnd 7601 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ)
126, 10, 11subaddd 7908 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 ↔ ((2 · 𝐵) + 1) = (2 · 𝐴)))
132a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 ∈ ℂ)
1413, 4, 8subdid 7989 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · (𝐴𝐵)) = ((2 · 𝐴) − (2 · 𝐵)))
1514oveq1d 5705 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴𝐵)) / 2) = (((2 · 𝐴) − (2 · 𝐵)) / 2))
16 zsubcl 8889 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
17 zcn 8853 . . . . . . . . . 10 ((𝐴𝐵) ∈ ℤ → (𝐴𝐵) ∈ ℂ)
1816, 17syl 14 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
19 2ap0 8613 . . . . . . . . . 10 2 # 0
2019a1i 9 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 # 0)
2118, 13, 20divcanap3d 8359 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴𝐵)) / 2) = (𝐴𝐵))
2215, 21eqtr3d 2129 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (𝐴𝐵))
2322, 16eqeltrd 2171 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ)
24 oveq1 5697 . . . . . . 7 (((2 · 𝐴) − (2 · 𝐵)) = 1 → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (1 / 2))
2524eleq1d 2163 . . . . . 6 (((2 · 𝐴) − (2 · 𝐵)) = 1 → ((((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ ↔ (1 / 2) ∈ ℤ))
2623, 25syl5ibcom 154 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 → (1 / 2) ∈ ℤ))
2712, 26sylbird 169 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐵) + 1) = (2 · 𝐴) → (1 / 2) ∈ ℤ))
2827necon3bd 2305 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ (1 / 2) ∈ ℤ → ((2 · 𝐵) + 1) ≠ (2 · 𝐴)))
291, 28mpi 15 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · 𝐵) + 1) ≠ (2 · 𝐴))
3029necomd 2348 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   = wceq 1296   ∈ wcel 1445   ≠ wne 2262   class class class wbr 3867  (class class class)co 5690  ℂcc 7445  0cc0 7447  1c1 7448   + caddc 7450   · cmul 7452   − cmin 7750   # cap 8155   / cdiv 8236  2c2 8571  ℤcz 8848 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560 This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-n0 8772  df-z 8849 This theorem is referenced by:  nneo  8948  zeo2  8951
 Copyright terms: Public domain W3C validator