![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssvneln0 | GIF version |
Description: A vector 𝑋 which doesn't belong to a subspace 𝑈 is nonzero. (Contributed by NM, 14-May-2015.) (Revised by AV, 19-Jul-2022.) |
Ref | Expression |
---|---|
lssvneln0.o | ⊢ 0 = (0g‘𝑊) |
lssvneln0.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssvneln0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssvneln0.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lssvneln0.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
lssvneln0 | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvneln0.n | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
2 | lssvneln0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lssvneln0.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
4 | lssvneln0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
5 | lssvneln0.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
6 | 4, 5 | lss0cl 13868 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) |
7 | 2, 3, 6 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑈) |
8 | eleq1a 2265 | . . . 4 ⊢ ( 0 ∈ 𝑈 → (𝑋 = 0 → 𝑋 ∈ 𝑈)) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → (𝑋 = 0 → 𝑋 ∈ 𝑈)) |
10 | 9 | necon3bd 2407 | . 2 ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 → 𝑋 ≠ 0 )) |
11 | 1, 10 | mpd 13 | 1 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ‘cfv 5255 0gc0g 12870 LModclmod 13786 LSubSpclss 13851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-mgp 13420 df-ur 13459 df-ring 13497 df-lmod 13788 df-lssm 13852 |
This theorem is referenced by: lssneln0 13873 |
Copyright terms: Public domain | W3C validator |