Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neap0mkv GIF version

Theorem neap0mkv 16008
Description: The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
neap0mkv (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
Distinct variable group:   𝑥,𝑦

Proof of Theorem neap0mkv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0re 8072 . . . 4 0 ∈ ℝ
2 neeq2 2390 . . . . . 6 (𝑦 = 0 → (𝑥𝑦𝑥 ≠ 0))
3 breq2 4048 . . . . . 6 (𝑦 = 0 → (𝑥 # 𝑦𝑥 # 0))
42, 3imbi12d 234 . . . . 5 (𝑦 = 0 → ((𝑥𝑦𝑥 # 𝑦) ↔ (𝑥 ≠ 0 → 𝑥 # 0)))
54rspcv 2873 . . . 4 (0 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0)))
61, 5ax-mp 5 . . 3 (∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0))
76ralimi 2569 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
8 neeq1 2389 . . . . 5 (𝑥 = 𝑧 → (𝑥 ≠ 0 ↔ 𝑧 ≠ 0))
9 breq1 4047 . . . . 5 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
108, 9imbi12d 234 . . . 4 (𝑥 = 𝑧 → ((𝑥 ≠ 0 → 𝑥 # 0) ↔ (𝑧 ≠ 0 → 𝑧 # 0)))
1110cbvralv 2738 . . 3 (∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0) ↔ ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
12 neeq1 2389 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 ≠ 0 ↔ (𝑥𝑦) ≠ 0))
13 breq1 4047 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 # 0 ↔ (𝑥𝑦) # 0))
1412, 13imbi12d 234 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ ((𝑥𝑦) ≠ 0 → (𝑥𝑦) # 0)))
15 simpl 109 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
16 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
17 simprr 531 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
1816, 17resubcld 8453 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
1914, 15, 18rspcdva 2882 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≠ 0 → (𝑥𝑦) # 0))
2016recnd 8101 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
2117recnd 8101 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
2220, 21subeq0ad 8393 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
2322necon3bid 2417 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≠ 0 ↔ 𝑥𝑦))
24 subap0 8716 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
2520, 21, 24syl2anc 411 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
2619, 23, 253imtr3d 202 . . . 4 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦𝑥 # 𝑦))
2726ralrimivva 2588 . . 3 (∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
2811, 27sylbi 121 . 2 (∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
297, 28impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wne 2376  wral 2484   class class class wbr 4044  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925  cmin 8243   # cap 8654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655
This theorem is referenced by:  ltlenmkv  16009
  Copyright terms: Public domain W3C validator