Step | Hyp | Ref
| Expression |
1 | | 0re 7957 |
. . . 4
⊢ 0 ∈
ℝ |
2 | | neeq2 2361 |
. . . . . 6
⊢ (𝑦 = 0 → (𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 0)) |
3 | | breq2 4008 |
. . . . . 6
⊢ (𝑦 = 0 → (𝑥 # 𝑦 ↔ 𝑥 # 0)) |
4 | 2, 3 | imbi12d 234 |
. . . . 5
⊢ (𝑦 = 0 → ((𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ↔ (𝑥 ≠ 0 → 𝑥 # 0))) |
5 | 4 | rspcv 2838 |
. . . 4
⊢ (0 ∈
ℝ → (∀𝑦
∈ ℝ (𝑥 ≠
𝑦 → 𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0))) |
6 | 1, 5 | ax-mp 5 |
. . 3
⊢
(∀𝑦 ∈
ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0)) |
7 | 6 | ralimi 2540 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) |
8 | | neeq1 2360 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ≠ 0 ↔ 𝑧 ≠ 0)) |
9 | | breq1 4007 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0)) |
10 | 8, 9 | imbi12d 234 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝑥 ≠ 0 → 𝑥 # 0) ↔ (𝑧 ≠ 0 → 𝑧 # 0))) |
11 | 10 | cbvralv 2704 |
. . 3
⊢
(∀𝑥 ∈
ℝ (𝑥 ≠ 0 →
𝑥 # 0) ↔ ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0)) |
12 | | neeq1 2360 |
. . . . . . 7
⊢ (𝑧 = (𝑥 − 𝑦) → (𝑧 ≠ 0 ↔ (𝑥 − 𝑦) ≠ 0)) |
13 | | breq1 4007 |
. . . . . . 7
⊢ (𝑧 = (𝑥 − 𝑦) → (𝑧 # 0 ↔ (𝑥 − 𝑦) # 0)) |
14 | 12, 13 | imbi12d 234 |
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ ((𝑥 − 𝑦) ≠ 0 → (𝑥 − 𝑦) # 0))) |
15 | | simpl 109 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
∀𝑧 ∈ ℝ
(𝑧 ≠ 0 → 𝑧 # 0)) |
16 | | simprl 529 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈
ℝ) |
17 | | simprr 531 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈
ℝ) |
18 | 16, 17 | resubcld 8338 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
19 | 14, 15, 18 | rspcdva 2847 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) ≠ 0 → (𝑥 − 𝑦) # 0)) |
20 | 16 | recnd 7986 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈
ℂ) |
21 | 17 | recnd 7986 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈
ℂ) |
22 | 20, 21 | subeq0ad 8278 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) |
23 | 22 | necon3bid 2388 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) ≠ 0 ↔ 𝑥 ≠ 𝑦)) |
24 | | subap0 8600 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) # 0 ↔ 𝑥 # 𝑦)) |
25 | 20, 21, 24 | syl2anc 411 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) # 0 ↔ 𝑥 # 𝑦)) |
26 | 19, 23, 25 | 3imtr3d 202 |
. . . 4
⊢
((∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) |
27 | 26 | ralrimivva 2559 |
. . 3
⊢
(∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) |
28 | 11, 27 | sylbi 121 |
. 2
⊢
(∀𝑥 ∈
ℝ (𝑥 ≠ 0 →
𝑥 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) |
29 | 7, 28 | impbii 126 |
1
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) |