Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neap0mkv GIF version

Theorem neap0mkv 15740
Description: The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
neap0mkv (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
Distinct variable group:   𝑥,𝑦

Proof of Theorem neap0mkv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0re 8029 . . . 4 0 ∈ ℝ
2 neeq2 2381 . . . . . 6 (𝑦 = 0 → (𝑥𝑦𝑥 ≠ 0))
3 breq2 4038 . . . . . 6 (𝑦 = 0 → (𝑥 # 𝑦𝑥 # 0))
42, 3imbi12d 234 . . . . 5 (𝑦 = 0 → ((𝑥𝑦𝑥 # 𝑦) ↔ (𝑥 ≠ 0 → 𝑥 # 0)))
54rspcv 2864 . . . 4 (0 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0)))
61, 5ax-mp 5 . . 3 (∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0))
76ralimi 2560 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
8 neeq1 2380 . . . . 5 (𝑥 = 𝑧 → (𝑥 ≠ 0 ↔ 𝑧 ≠ 0))
9 breq1 4037 . . . . 5 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
108, 9imbi12d 234 . . . 4 (𝑥 = 𝑧 → ((𝑥 ≠ 0 → 𝑥 # 0) ↔ (𝑧 ≠ 0 → 𝑧 # 0)))
1110cbvralv 2729 . . 3 (∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0) ↔ ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
12 neeq1 2380 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 ≠ 0 ↔ (𝑥𝑦) ≠ 0))
13 breq1 4037 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 # 0 ↔ (𝑥𝑦) # 0))
1412, 13imbi12d 234 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ ((𝑥𝑦) ≠ 0 → (𝑥𝑦) # 0)))
15 simpl 109 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
16 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
17 simprr 531 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
1816, 17resubcld 8410 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
1914, 15, 18rspcdva 2873 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≠ 0 → (𝑥𝑦) # 0))
2016recnd 8058 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
2117recnd 8058 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
2220, 21subeq0ad 8350 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
2322necon3bid 2408 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≠ 0 ↔ 𝑥𝑦))
24 subap0 8673 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
2520, 21, 24syl2anc 411 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
2619, 23, 253imtr3d 202 . . . 4 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦𝑥 # 𝑦))
2726ralrimivva 2579 . . 3 (∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
2811, 27sylbi 121 . 2 (∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
297, 28impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wral 2475   class class class wbr 4034  (class class class)co 5923  cc 7880  cr 7881  0cc0 7882  cmin 8200   # cap 8611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-ltxr 8069  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612
This theorem is referenced by:  ltlenmkv  15741
  Copyright terms: Public domain W3C validator