Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neap0mkv GIF version

Theorem neap0mkv 16210
Description: The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
neap0mkv (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
Distinct variable group:   𝑥,𝑦

Proof of Theorem neap0mkv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0re 8107 . . . 4 0 ∈ ℝ
2 neeq2 2392 . . . . . 6 (𝑦 = 0 → (𝑥𝑦𝑥 ≠ 0))
3 breq2 4063 . . . . . 6 (𝑦 = 0 → (𝑥 # 𝑦𝑥 # 0))
42, 3imbi12d 234 . . . . 5 (𝑦 = 0 → ((𝑥𝑦𝑥 # 𝑦) ↔ (𝑥 ≠ 0 → 𝑥 # 0)))
54rspcv 2880 . . . 4 (0 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0)))
61, 5ax-mp 5 . . 3 (∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0))
76ralimi 2571 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
8 neeq1 2391 . . . . 5 (𝑥 = 𝑧 → (𝑥 ≠ 0 ↔ 𝑧 ≠ 0))
9 breq1 4062 . . . . 5 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
108, 9imbi12d 234 . . . 4 (𝑥 = 𝑧 → ((𝑥 ≠ 0 → 𝑥 # 0) ↔ (𝑧 ≠ 0 → 𝑧 # 0)))
1110cbvralv 2742 . . 3 (∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0) ↔ ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
12 neeq1 2391 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 ≠ 0 ↔ (𝑥𝑦) ≠ 0))
13 breq1 4062 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 # 0 ↔ (𝑥𝑦) # 0))
1412, 13imbi12d 234 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ ((𝑥𝑦) ≠ 0 → (𝑥𝑦) # 0)))
15 simpl 109 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
16 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
17 simprr 531 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
1816, 17resubcld 8488 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
1914, 15, 18rspcdva 2889 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≠ 0 → (𝑥𝑦) # 0))
2016recnd 8136 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
2117recnd 8136 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
2220, 21subeq0ad 8428 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
2322necon3bid 2419 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≠ 0 ↔ 𝑥𝑦))
24 subap0 8751 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
2520, 21, 24syl2anc 411 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
2619, 23, 253imtr3d 202 . . . 4 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦𝑥 # 𝑦))
2726ralrimivva 2590 . . 3 (∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
2811, 27sylbi 121 . 2 (∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
297, 28impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wne 2378  wral 2486   class class class wbr 4059  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960  cmin 8278   # cap 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690
This theorem is referenced by:  ltlenmkv  16211
  Copyright terms: Public domain W3C validator