Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neap0mkv GIF version

Theorem neap0mkv 16396
Description: The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
neap0mkv (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
Distinct variable group:   𝑥,𝑦

Proof of Theorem neap0mkv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0re 8142 . . . 4 0 ∈ ℝ
2 neeq2 2414 . . . . . 6 (𝑦 = 0 → (𝑥𝑦𝑥 ≠ 0))
3 breq2 4086 . . . . . 6 (𝑦 = 0 → (𝑥 # 𝑦𝑥 # 0))
42, 3imbi12d 234 . . . . 5 (𝑦 = 0 → ((𝑥𝑦𝑥 # 𝑦) ↔ (𝑥 ≠ 0 → 𝑥 # 0)))
54rspcv 2903 . . . 4 (0 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0)))
61, 5ax-mp 5 . . 3 (∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → (𝑥 ≠ 0 → 𝑥 # 0))
76ralimi 2593 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
8 neeq1 2413 . . . . 5 (𝑥 = 𝑧 → (𝑥 ≠ 0 ↔ 𝑧 ≠ 0))
9 breq1 4085 . . . . 5 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
108, 9imbi12d 234 . . . 4 (𝑥 = 𝑧 → ((𝑥 ≠ 0 → 𝑥 # 0) ↔ (𝑧 ≠ 0 → 𝑧 # 0)))
1110cbvralv 2765 . . 3 (∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0) ↔ ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
12 neeq1 2413 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 ≠ 0 ↔ (𝑥𝑦) ≠ 0))
13 breq1 4085 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 # 0 ↔ (𝑥𝑦) # 0))
1412, 13imbi12d 234 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ ((𝑥𝑦) ≠ 0 → (𝑥𝑦) # 0)))
15 simpl 109 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
16 simprl 529 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
17 simprr 531 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
1816, 17resubcld 8523 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
1914, 15, 18rspcdva 2912 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≠ 0 → (𝑥𝑦) # 0))
2016recnd 8171 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
2117recnd 8171 . . . . . . 7 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
2220, 21subeq0ad 8463 . . . . . 6 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
2322necon3bid 2441 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) ≠ 0 ↔ 𝑥𝑦))
24 subap0 8786 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
2520, 21, 24syl2anc 411 . . . . 5 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
2619, 23, 253imtr3d 202 . . . 4 ((∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦𝑥 # 𝑦))
2726ralrimivva 2612 . . 3 (∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
2811, 27sylbi 121 . 2 (∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
297, 28impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wral 2508   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  cmin 8313   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by:  ltlenmkv  16397
  Copyright terms: Public domain W3C validator