ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negned GIF version

Theorem negned 8267
Description: If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d 8282. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
negned.2 (𝜑𝐵 ∈ ℂ)
negned.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
negned (𝜑 → -𝐴 ≠ -𝐵)

Proof of Theorem negned
StepHypRef Expression
1 negned.3 . 2 (𝜑𝐴𝐵)
2 negidd.1 . . . 4 (𝜑𝐴 ∈ ℂ)
3 negned.2 . . . 4 (𝜑𝐵 ∈ ℂ)
42, 3neg11ad 8266 . . 3 (𝜑 → (-𝐴 = -𝐵𝐴 = 𝐵))
54necon3bid 2388 . 2 (𝜑 → (-𝐴 ≠ -𝐵𝐴𝐵))
61, 5mpbird 167 1 (𝜑 → -𝐴 ≠ -𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wne 2347  cc 7811  -cneg 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator