ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irraplemnn GIF version

Theorem sqrt2irraplemnn 12317
Description: Lemma for sqrt2irrap 12318. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irraplemnn ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))

Proof of Theorem sqrt2irraplemnn
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ)
21nnsqcld 10765 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℕ)
32nnred 8995 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℝ)
4 0red 8020 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
52nngt0d 9026 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴↑2))
64, 3, 5ltled 8138 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴↑2))
7 simpr 110 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
87nnsqcld 10765 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℕ)
98nnrpd 9760 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ+)
103, 6, 9sqrtdivd 11312 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = ((√‘(𝐴↑2)) / (√‘(𝐵↑2))))
111nnred 8995 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
121nngt0d 9026 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
134, 11, 12ltled 8138 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
1411, 13sqrtsqd 11309 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐴↑2)) = 𝐴)
157nnred 8995 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
167nngt0d 9026 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
174, 15, 16ltled 8138 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
1815, 17sqrtsqd 11309 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐵↑2)) = 𝐵)
1914, 18oveq12d 5936 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘(𝐴↑2)) / (√‘(𝐵↑2))) = (𝐴 / 𝐵))
2010, 19eqtrd 2226 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = (𝐴 / 𝐵))
21 sqne2sq 12315 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
222nncnd 8996 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
23 2cnd 9055 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℂ)
248nncnd 8996 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
258nnap0d 9028 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) # 0)
2622, 23, 24, 25divmulap3d 8844 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 2 ↔ (𝐴↑2) = (2 · (𝐵↑2))))
2726necon3bid 2405 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) ≠ 2 ↔ (𝐴↑2) ≠ (2 · (𝐵↑2))))
2821, 27mpbird 167 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ≠ 2)
292nnzd 9438 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℤ)
30 znq 9689 . . . . . . 7 (((𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
3129, 8, 30syl2anc 411 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
32 2z 9345 . . . . . . 7 2 ∈ ℤ
33 zq 9691 . . . . . . 7 (2 ∈ ℤ → 2 ∈ ℚ)
3432, 33mp1i 10 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℚ)
35 qapne 9704 . . . . . 6 ((((𝐴↑2) / (𝐵↑2)) ∈ ℚ ∧ 2 ∈ ℚ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3631, 34, 35syl2anc 411 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3728, 36mpbird 167 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) # 2)
38 qre 9690 . . . . . 6 (((𝐴↑2) / (𝐵↑2)) ∈ ℚ → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
3931, 38syl 14 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
408nnred 8995 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ)
418nngt0d 9026 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐵↑2))
423, 40, 5, 41divgt0d 8954 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < ((𝐴↑2) / (𝐵↑2)))
434, 39, 42ltled 8138 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ ((𝐴↑2) / (𝐵↑2)))
44 2re 9052 . . . . . 6 2 ∈ ℝ
4544a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
46 0le2 9072 . . . . . 6 0 ≤ 2
4746a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 2)
48 sqrt11ap 11182 . . . . 5 (((((𝐴↑2) / (𝐵↑2)) ∈ ℝ ∧ 0 ≤ ((𝐴↑2) / (𝐵↑2))) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
4939, 43, 45, 47, 48syl22anc 1250 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
5037, 49mpbird 167 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) # (√‘2))
5120, 50eqbrtrrd 4053 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # (√‘2))
52 nnz 9336 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
53 znq 9689 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
5452, 53sylan 283 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
55 qcn 9699 . . . 4 ((𝐴 / 𝐵) ∈ ℚ → (𝐴 / 𝐵) ∈ ℂ)
5654, 55syl 14 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℂ)
57 sqrt2re 12301 . . . . 5 (√‘2) ∈ ℝ
5857recni 8031 . . . 4 (√‘2) ∈ ℂ
5958a1i 9 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) ∈ ℂ)
60 apsym 8625 . . 3 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘2) ∈ ℂ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6156, 59, 60syl2anc 411 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6251, 61mpbid 147 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wne 2364   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872   · cmul 7877  cle 8055   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  cz 9317  cq 9684  cexp 10609  csqrt 11140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246
This theorem is referenced by:  sqrt2irrap  12318
  Copyright terms: Public domain W3C validator