ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irraplemnn GIF version

Theorem sqrt2irraplemnn 11846
Description: Lemma for sqrt2irrap 11847. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irraplemnn ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))

Proof of Theorem sqrt2irraplemnn
StepHypRef Expression
1 simpl 108 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ)
21nnsqcld 10438 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℕ)
32nnred 8726 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℝ)
4 0red 7760 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
52nngt0d 8757 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴↑2))
64, 3, 5ltled 7874 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴↑2))
7 simpr 109 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
87nnsqcld 10438 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℕ)
98nnrpd 9475 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ+)
103, 6, 9sqrtdivd 10933 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = ((√‘(𝐴↑2)) / (√‘(𝐵↑2))))
111nnred 8726 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
121nngt0d 8757 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
134, 11, 12ltled 7874 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
1411, 13sqrtsqd 10930 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐴↑2)) = 𝐴)
157nnred 8726 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
167nngt0d 8757 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
174, 15, 16ltled 7874 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
1815, 17sqrtsqd 10930 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐵↑2)) = 𝐵)
1914, 18oveq12d 5785 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘(𝐴↑2)) / (√‘(𝐵↑2))) = (𝐴 / 𝐵))
2010, 19eqtrd 2170 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = (𝐴 / 𝐵))
21 sqne2sq 11844 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
222nncnd 8727 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
23 2cnd 8786 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℂ)
248nncnd 8727 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
258nnap0d 8759 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) # 0)
2622, 23, 24, 25divmulap3d 8578 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 2 ↔ (𝐴↑2) = (2 · (𝐵↑2))))
2726necon3bid 2347 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) ≠ 2 ↔ (𝐴↑2) ≠ (2 · (𝐵↑2))))
2821, 27mpbird 166 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ≠ 2)
292nnzd 9165 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℤ)
30 znq 9409 . . . . . . 7 (((𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
3129, 8, 30syl2anc 408 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
32 2z 9075 . . . . . . 7 2 ∈ ℤ
33 zq 9411 . . . . . . 7 (2 ∈ ℤ → 2 ∈ ℚ)
3432, 33mp1i 10 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℚ)
35 qapne 9424 . . . . . 6 ((((𝐴↑2) / (𝐵↑2)) ∈ ℚ ∧ 2 ∈ ℚ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3631, 34, 35syl2anc 408 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3728, 36mpbird 166 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) # 2)
38 qre 9410 . . . . . 6 (((𝐴↑2) / (𝐵↑2)) ∈ ℚ → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
3931, 38syl 14 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
408nnred 8726 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ)
418nngt0d 8757 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐵↑2))
423, 40, 5, 41divgt0d 8686 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < ((𝐴↑2) / (𝐵↑2)))
434, 39, 42ltled 7874 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ ((𝐴↑2) / (𝐵↑2)))
44 2re 8783 . . . . . 6 2 ∈ ℝ
4544a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
46 0le2 8803 . . . . . 6 0 ≤ 2
4746a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 2)
48 sqrt11ap 10803 . . . . 5 (((((𝐴↑2) / (𝐵↑2)) ∈ ℝ ∧ 0 ≤ ((𝐴↑2) / (𝐵↑2))) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
4939, 43, 45, 47, 48syl22anc 1217 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
5037, 49mpbird 166 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) # (√‘2))
5120, 50eqbrtrrd 3947 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # (√‘2))
52 nnz 9066 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
53 znq 9409 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
5452, 53sylan 281 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
55 qcn 9419 . . . 4 ((𝐴 / 𝐵) ∈ ℚ → (𝐴 / 𝐵) ∈ ℂ)
5654, 55syl 14 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℂ)
57 sqrt2re 11830 . . . . 5 (√‘2) ∈ ℝ
5857recni 7771 . . . 4 (√‘2) ∈ ℂ
5958a1i 9 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) ∈ ℂ)
60 apsym 8361 . . 3 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘2) ∈ ℂ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6156, 59, 60syl2anc 408 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6251, 61mpbid 146 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1480  wne 2306   class class class wbr 3924  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613   · cmul 7618  cle 7794   # cap 8336   / cdiv 8425  cn 8713  2c2 8764  cz 9047  cq 9404  cexp 10285  csqrt 10761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-1o 6306  df-2o 6307  df-er 6422  df-en 6628  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625  df-prm 11778
This theorem is referenced by:  sqrt2irrap  11847
  Copyright terms: Public domain W3C validator