ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irraplemnn GIF version

Theorem sqrt2irraplemnn 12709
Description: Lemma for sqrt2irrap 12710. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irraplemnn ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))

Proof of Theorem sqrt2irraplemnn
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ)
21nnsqcld 10924 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℕ)
32nnred 9131 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℝ)
4 0red 8155 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
52nngt0d 9162 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴↑2))
64, 3, 5ltled 8273 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴↑2))
7 simpr 110 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
87nnsqcld 10924 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℕ)
98nnrpd 9898 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ+)
103, 6, 9sqrtdivd 11687 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = ((√‘(𝐴↑2)) / (√‘(𝐵↑2))))
111nnred 9131 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
121nngt0d 9162 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
134, 11, 12ltled 8273 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
1411, 13sqrtsqd 11684 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐴↑2)) = 𝐴)
157nnred 9131 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
167nngt0d 9162 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
174, 15, 16ltled 8273 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
1815, 17sqrtsqd 11684 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐵↑2)) = 𝐵)
1914, 18oveq12d 6025 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘(𝐴↑2)) / (√‘(𝐵↑2))) = (𝐴 / 𝐵))
2010, 19eqtrd 2262 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = (𝐴 / 𝐵))
21 sqne2sq 12707 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
222nncnd 9132 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
23 2cnd 9191 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℂ)
248nncnd 9132 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
258nnap0d 9164 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) # 0)
2622, 23, 24, 25divmulap3d 8980 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 2 ↔ (𝐴↑2) = (2 · (𝐵↑2))))
2726necon3bid 2441 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) ≠ 2 ↔ (𝐴↑2) ≠ (2 · (𝐵↑2))))
2821, 27mpbird 167 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ≠ 2)
292nnzd 9576 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℤ)
30 znq 9827 . . . . . . 7 (((𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
3129, 8, 30syl2anc 411 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
32 2z 9482 . . . . . . 7 2 ∈ ℤ
33 zq 9829 . . . . . . 7 (2 ∈ ℤ → 2 ∈ ℚ)
3432, 33mp1i 10 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℚ)
35 qapne 9842 . . . . . 6 ((((𝐴↑2) / (𝐵↑2)) ∈ ℚ ∧ 2 ∈ ℚ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3631, 34, 35syl2anc 411 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3728, 36mpbird 167 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) # 2)
38 qre 9828 . . . . . 6 (((𝐴↑2) / (𝐵↑2)) ∈ ℚ → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
3931, 38syl 14 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
408nnred 9131 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ)
418nngt0d 9162 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐵↑2))
423, 40, 5, 41divgt0d 9090 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < ((𝐴↑2) / (𝐵↑2)))
434, 39, 42ltled 8273 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ ((𝐴↑2) / (𝐵↑2)))
44 2re 9188 . . . . . 6 2 ∈ ℝ
4544a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
46 0le2 9208 . . . . . 6 0 ≤ 2
4746a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 2)
48 sqrt11ap 11557 . . . . 5 (((((𝐴↑2) / (𝐵↑2)) ∈ ℝ ∧ 0 ≤ ((𝐴↑2) / (𝐵↑2))) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
4939, 43, 45, 47, 48syl22anc 1272 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
5037, 49mpbird 167 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) # (√‘2))
5120, 50eqbrtrrd 4107 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # (√‘2))
52 nnz 9473 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
53 znq 9827 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
5452, 53sylan 283 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
55 qcn 9837 . . . 4 ((𝐴 / 𝐵) ∈ ℚ → (𝐴 / 𝐵) ∈ ℂ)
5654, 55syl 14 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℂ)
57 sqrt2re 12693 . . . . 5 (√‘2) ∈ ℝ
5857recni 8166 . . . 4 (√‘2) ∈ ℂ
5958a1i 9 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) ∈ ℂ)
60 apsym 8761 . . 3 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘2) ∈ ℂ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6156, 59, 60syl2anc 411 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6251, 61mpbid 147 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  wne 2400   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007   · cmul 8012  cle 8190   # cap 8736   / cdiv 8827  cn 9118  2c2 9169  cz 9454  cq 9822  cexp 10768  csqrt 11515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-prm 12638
This theorem is referenced by:  sqrt2irrap  12710
  Copyright terms: Public domain W3C validator