ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irraplemnn GIF version

Theorem sqrt2irraplemnn 12214
Description: Lemma for sqrt2irrap 12215. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irraplemnn ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))

Proof of Theorem sqrt2irraplemnn
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ)
21nnsqcld 10709 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℕ)
32nnred 8963 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℝ)
4 0red 7989 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
52nngt0d 8994 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴↑2))
64, 3, 5ltled 8107 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴↑2))
7 simpr 110 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
87nnsqcld 10709 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℕ)
98nnrpd 9726 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ+)
103, 6, 9sqrtdivd 11212 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = ((√‘(𝐴↑2)) / (√‘(𝐵↑2))))
111nnred 8963 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
121nngt0d 8994 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
134, 11, 12ltled 8107 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
1411, 13sqrtsqd 11209 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐴↑2)) = 𝐴)
157nnred 8963 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
167nngt0d 8994 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
174, 15, 16ltled 8107 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
1815, 17sqrtsqd 11209 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐵↑2)) = 𝐵)
1914, 18oveq12d 5915 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘(𝐴↑2)) / (√‘(𝐵↑2))) = (𝐴 / 𝐵))
2010, 19eqtrd 2222 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = (𝐴 / 𝐵))
21 sqne2sq 12212 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
222nncnd 8964 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
23 2cnd 9023 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℂ)
248nncnd 8964 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
258nnap0d 8996 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) # 0)
2622, 23, 24, 25divmulap3d 8813 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 2 ↔ (𝐴↑2) = (2 · (𝐵↑2))))
2726necon3bid 2401 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) ≠ 2 ↔ (𝐴↑2) ≠ (2 · (𝐵↑2))))
2821, 27mpbird 167 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ≠ 2)
292nnzd 9405 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℤ)
30 znq 9656 . . . . . . 7 (((𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
3129, 8, 30syl2anc 411 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
32 2z 9312 . . . . . . 7 2 ∈ ℤ
33 zq 9658 . . . . . . 7 (2 ∈ ℤ → 2 ∈ ℚ)
3432, 33mp1i 10 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℚ)
35 qapne 9671 . . . . . 6 ((((𝐴↑2) / (𝐵↑2)) ∈ ℚ ∧ 2 ∈ ℚ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3631, 34, 35syl2anc 411 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3728, 36mpbird 167 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) # 2)
38 qre 9657 . . . . . 6 (((𝐴↑2) / (𝐵↑2)) ∈ ℚ → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
3931, 38syl 14 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
408nnred 8963 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ)
418nngt0d 8994 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐵↑2))
423, 40, 5, 41divgt0d 8923 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < ((𝐴↑2) / (𝐵↑2)))
434, 39, 42ltled 8107 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ ((𝐴↑2) / (𝐵↑2)))
44 2re 9020 . . . . . 6 2 ∈ ℝ
4544a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
46 0le2 9040 . . . . . 6 0 ≤ 2
4746a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 2)
48 sqrt11ap 11082 . . . . 5 (((((𝐴↑2) / (𝐵↑2)) ∈ ℝ ∧ 0 ≤ ((𝐴↑2) / (𝐵↑2))) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
4939, 43, 45, 47, 48syl22anc 1250 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
5037, 49mpbird 167 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) # (√‘2))
5120, 50eqbrtrrd 4042 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # (√‘2))
52 nnz 9303 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
53 znq 9656 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
5452, 53sylan 283 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
55 qcn 9666 . . . 4 ((𝐴 / 𝐵) ∈ ℚ → (𝐴 / 𝐵) ∈ ℂ)
5654, 55syl 14 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℂ)
57 sqrt2re 12198 . . . . 5 (√‘2) ∈ ℝ
5857recni 8000 . . . 4 (√‘2) ∈ ℂ
5958a1i 9 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) ∈ ℂ)
60 apsym 8594 . . 3 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘2) ∈ ℂ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6156, 59, 60syl2anc 411 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6251, 61mpbid 147 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160  wne 2360   class class class wbr 4018  cfv 5235  (class class class)co 5897  cc 7840  cr 7841  0cc0 7842   · cmul 7847  cle 8024   # cap 8569   / cdiv 8660  cn 8950  2c2 9001  cz 9284  cq 9651  cexp 10553  csqrt 11040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-1o 6442  df-2o 6443  df-er 6560  df-en 6768  df-sup 7014  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830  df-gcd 11979  df-prm 12143
This theorem is referenced by:  sqrt2irrap  12215
  Copyright terms: Public domain W3C validator