Proof of Theorem sqrt2irraplemnn
Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈
ℕ) |
2 | 1 | nnsqcld 10630 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈
ℕ) |
3 | 2 | nnred 8891 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈
ℝ) |
4 | | 0red 7921 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈
ℝ) |
5 | 2 | nngt0d 8922 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 <
(𝐴↑2)) |
6 | 4, 3, 5 | ltled 8038 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤
(𝐴↑2)) |
7 | | simpr 109 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈
ℕ) |
8 | 7 | nnsqcld 10630 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈
ℕ) |
9 | 8 | nnrpd 9651 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈
ℝ+) |
10 | 3, 6, 9 | sqrtdivd 11132 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(√‘((𝐴↑2)
/ (𝐵↑2))) =
((√‘(𝐴↑2))
/ (√‘(𝐵↑2)))) |
11 | 1 | nnred 8891 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈
ℝ) |
12 | 1 | nngt0d 8922 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 <
𝐴) |
13 | 4, 11, 12 | ltled 8038 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤
𝐴) |
14 | 11, 13 | sqrtsqd 11129 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(√‘(𝐴↑2))
= 𝐴) |
15 | 7 | nnred 8891 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈
ℝ) |
16 | 7 | nngt0d 8922 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 <
𝐵) |
17 | 4, 15, 16 | ltled 8038 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤
𝐵) |
18 | 15, 17 | sqrtsqd 11129 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(√‘(𝐵↑2))
= 𝐵) |
19 | 14, 18 | oveq12d 5871 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
((√‘(𝐴↑2))
/ (√‘(𝐵↑2))) = (𝐴 / 𝐵)) |
20 | 10, 19 | eqtrd 2203 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(√‘((𝐴↑2)
/ (𝐵↑2))) = (𝐴 / 𝐵)) |
21 | | sqne2sq 12131 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2))) |
22 | 2 | nncnd 8892 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈
ℂ) |
23 | | 2cnd 8951 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈
ℂ) |
24 | 8 | nncnd 8892 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈
ℂ) |
25 | 8 | nnap0d 8924 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) # 0) |
26 | 22, 23, 24, 25 | divmulap3d 8742 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 2 ↔ (𝐴↑2) = (2 · (𝐵↑2)))) |
27 | 26 | necon3bid 2381 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) ≠ 2 ↔ (𝐴↑2) ≠ (2 · (𝐵↑2)))) |
28 | 21, 27 | mpbird 166 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ≠ 2) |
29 | 2 | nnzd 9333 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈
ℤ) |
30 | | znq 9583 |
. . . . . . 7
⊢ (((𝐴↑2) ∈ ℤ ∧
(𝐵↑2) ∈ ℕ)
→ ((𝐴↑2) / (𝐵↑2)) ∈
ℚ) |
31 | 29, 8, 30 | syl2anc 409 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ) |
32 | | 2z 9240 |
. . . . . . 7
⊢ 2 ∈
ℤ |
33 | | zq 9585 |
. . . . . . 7
⊢ (2 ∈
ℤ → 2 ∈ ℚ) |
34 | 32, 33 | mp1i 10 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈
ℚ) |
35 | | qapne 9598 |
. . . . . 6
⊢ ((((𝐴↑2) / (𝐵↑2)) ∈ ℚ ∧ 2 ∈
ℚ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2)) |
36 | 31, 34, 35 | syl2anc 409 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2)) |
37 | 28, 36 | mpbird 166 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) # 2) |
38 | | qre 9584 |
. . . . . 6
⊢ (((𝐴↑2) / (𝐵↑2)) ∈ ℚ → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ) |
39 | 31, 38 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ) |
40 | 8 | nnred 8891 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈
ℝ) |
41 | 8 | nngt0d 8922 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 <
(𝐵↑2)) |
42 | 3, 40, 5, 41 | divgt0d 8851 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 <
((𝐴↑2) / (𝐵↑2))) |
43 | 4, 39, 42 | ltled 8038 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤
((𝐴↑2) / (𝐵↑2))) |
44 | | 2re 8948 |
. . . . . 6
⊢ 2 ∈
ℝ |
45 | 44 | a1i 9 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈
ℝ) |
46 | | 0le2 8968 |
. . . . . 6
⊢ 0 ≤
2 |
47 | 46 | a1i 9 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤
2) |
48 | | sqrt11ap 11002 |
. . . . 5
⊢
(((((𝐴↑2) /
(𝐵↑2)) ∈ ℝ
∧ 0 ≤ ((𝐴↑2) /
(𝐵↑2))) ∧ (2
∈ ℝ ∧ 0 ≤ 2)) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔
((𝐴↑2) / (𝐵↑2)) # 2)) |
49 | 39, 43, 45, 47, 48 | syl22anc 1234 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
((√‘((𝐴↑2)
/ (𝐵↑2))) #
(√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2)) |
50 | 37, 49 | mpbird 166 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(√‘((𝐴↑2)
/ (𝐵↑2))) #
(√‘2)) |
51 | 20, 50 | eqbrtrrd 4013 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # (√‘2)) |
52 | | nnz 9231 |
. . . . 5
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
53 | | znq 9583 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) |
54 | 52, 53 | sylan 281 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) |
55 | | qcn 9593 |
. . . 4
⊢ ((𝐴 / 𝐵) ∈ ℚ → (𝐴 / 𝐵) ∈ ℂ) |
56 | 54, 55 | syl 14 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℂ) |
57 | | sqrt2re 12117 |
. . . . 5
⊢
(√‘2) ∈ ℝ |
58 | 57 | recni 7932 |
. . . 4
⊢
(√‘2) ∈ ℂ |
59 | 58 | a1i 9 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(√‘2) ∈ ℂ) |
60 | | apsym 8525 |
. . 3
⊢ (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘2)
∈ ℂ) → ((𝐴
/ 𝐵) # (√‘2)
↔ (√‘2) # (𝐴 / 𝐵))) |
61 | 56, 59, 60 | syl2anc 409 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # (√‘2) ↔
(√‘2) # (𝐴 /
𝐵))) |
62 | 51, 61 | mpbid 146 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(√‘2) # (𝐴 /
𝐵)) |