ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irraplemnn GIF version

Theorem sqrt2irraplemnn 12667
Description: Lemma for sqrt2irrap 12668. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irraplemnn ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))

Proof of Theorem sqrt2irraplemnn
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ)
21nnsqcld 10883 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℕ)
32nnred 9091 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℝ)
4 0red 8115 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ∈ ℝ)
52nngt0d 9122 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴↑2))
64, 3, 5ltled 8233 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴↑2))
7 simpr 110 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
87nnsqcld 10883 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℕ)
98nnrpd 9858 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ+)
103, 6, 9sqrtdivd 11645 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = ((√‘(𝐴↑2)) / (√‘(𝐵↑2))))
111nnred 9091 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
121nngt0d 9122 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
134, 11, 12ltled 8233 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
1411, 13sqrtsqd 11642 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐴↑2)) = 𝐴)
157nnred 9091 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
167nngt0d 9122 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
174, 15, 16ltled 8233 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐵)
1815, 17sqrtsqd 11642 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘(𝐵↑2)) = 𝐵)
1914, 18oveq12d 5992 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘(𝐴↑2)) / (√‘(𝐵↑2))) = (𝐴 / 𝐵))
2010, 19eqtrd 2242 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = (𝐴 / 𝐵))
21 sqne2sq 12665 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
222nncnd 9092 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
23 2cnd 9151 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℂ)
248nncnd 9092 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
258nnap0d 9124 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) # 0)
2622, 23, 24, 25divmulap3d 8940 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 2 ↔ (𝐴↑2) = (2 · (𝐵↑2))))
2726necon3bid 2421 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) ≠ 2 ↔ (𝐴↑2) ≠ (2 · (𝐵↑2))))
2821, 27mpbird 167 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ≠ 2)
292nnzd 9536 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℤ)
30 znq 9787 . . . . . . 7 (((𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
3129, 8, 30syl2anc 411 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℚ)
32 2z 9442 . . . . . . 7 2 ∈ ℤ
33 zq 9789 . . . . . . 7 (2 ∈ ℤ → 2 ∈ ℚ)
3432, 33mp1i 10 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℚ)
35 qapne 9802 . . . . . 6 ((((𝐴↑2) / (𝐵↑2)) ∈ ℚ ∧ 2 ∈ ℚ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3631, 34, 35syl2anc 411 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) # 2 ↔ ((𝐴↑2) / (𝐵↑2)) ≠ 2))
3728, 36mpbird 167 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) # 2)
38 qre 9788 . . . . . 6 (((𝐴↑2) / (𝐵↑2)) ∈ ℚ → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
3931, 38syl 14 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) / (𝐵↑2)) ∈ ℝ)
408nnred 9091 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℝ)
418nngt0d 9122 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐵↑2))
423, 40, 5, 41divgt0d 9050 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < ((𝐴↑2) / (𝐵↑2)))
434, 39, 42ltled 8233 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ ((𝐴↑2) / (𝐵↑2)))
44 2re 9148 . . . . . 6 2 ∈ ℝ
4544a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
46 0le2 9168 . . . . . 6 0 ≤ 2
4746a1i 9 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 2)
48 sqrt11ap 11515 . . . . 5 (((((𝐴↑2) / (𝐵↑2)) ∈ ℝ ∧ 0 ≤ ((𝐴↑2) / (𝐵↑2))) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
4939, 43, 45, 47, 48syl22anc 1253 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((√‘((𝐴↑2) / (𝐵↑2))) # (√‘2) ↔ ((𝐴↑2) / (𝐵↑2)) # 2))
5037, 49mpbird 167 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) # (√‘2))
5120, 50eqbrtrrd 4086 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # (√‘2))
52 nnz 9433 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
53 znq 9787 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
5452, 53sylan 283 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
55 qcn 9797 . . . 4 ((𝐴 / 𝐵) ∈ ℚ → (𝐴 / 𝐵) ∈ ℂ)
5654, 55syl 14 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℂ)
57 sqrt2re 12651 . . . . 5 (√‘2) ∈ ℝ
5857recni 8126 . . . 4 (√‘2) ∈ ℂ
5958a1i 9 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) ∈ ℂ)
60 apsym 8721 . . 3 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘2) ∈ ℂ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6156, 59, 60syl2anc 411 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # (√‘2) ↔ (√‘2) # (𝐴 / 𝐵)))
6251, 61mpbid 147 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2180  wne 2380   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967   · cmul 7972  cle 8150   # cap 8696   / cdiv 8787  cn 9078  2c2 9129  cz 9414  cq 9782  cexp 10727  csqrt 11473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441  df-prm 12596
This theorem is referenced by:  sqrt2irrap  12668
  Copyright terms: Public domain W3C validator