![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fihashneq0 | GIF version |
Description: Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 6530. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
Ref | Expression |
---|---|
fihashneq0 | ⊢ (𝐴 ∈ Fin → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 10023 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
2 | 1 | nn0zd 8761 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℤ) |
3 | 0zd 8657 | . . 3 ⊢ (𝐴 ∈ Fin → 0 ∈ ℤ) | |
4 | zapne 8716 | . . 3 ⊢ (((♯‘𝐴) ∈ ℤ ∧ 0 ∈ ℤ) → ((♯‘𝐴) # 0 ↔ (♯‘𝐴) ≠ 0)) | |
5 | 2, 3, 4 | syl2anc 403 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) # 0 ↔ (♯‘𝐴) ≠ 0)) |
6 | nn0re 8573 | . . . 4 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ) | |
7 | nn0ge0 8589 | . . . 4 ⊢ ((♯‘𝐴) ∈ ℕ0 → 0 ≤ (♯‘𝐴)) | |
8 | ap0gt0 8014 | . . . 4 ⊢ (((♯‘𝐴) ∈ ℝ ∧ 0 ≤ (♯‘𝐴)) → ((♯‘𝐴) # 0 ↔ 0 < (♯‘𝐴))) | |
9 | 6, 7, 8 | syl2anc 403 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) # 0 ↔ 0 < (♯‘𝐴))) |
10 | 1, 9 | syl 14 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) # 0 ↔ 0 < (♯‘𝐴))) |
11 | fihasheq0 10036 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
12 | 11 | necon3bid 2290 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
13 | 5, 10, 12 | 3bitr3d 216 | 1 ⊢ (𝐴 ∈ Fin → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∈ wcel 1434 ≠ wne 2249 ∅c0 3269 class class class wbr 3811 ‘cfv 4968 Fincfn 6386 ℝcr 7251 0cc0 7252 < clt 7424 ≤ cle 7425 # cap 7957 ℕ0cn0 8564 ℤcz 8645 ♯chash 10017 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7338 ax-resscn 7339 ax-1cn 7340 ax-1re 7341 ax-icn 7342 ax-addcl 7343 ax-addrcl 7344 ax-mulcl 7345 ax-mulrcl 7346 ax-addcom 7347 ax-mulcom 7348 ax-addass 7349 ax-mulass 7350 ax-distr 7351 ax-i2m1 7352 ax-0lt1 7353 ax-1rid 7354 ax-0id 7355 ax-rnegex 7356 ax-precex 7357 ax-cnre 7358 ax-pre-ltirr 7359 ax-pre-ltwlin 7360 ax-pre-lttrn 7361 ax-pre-apti 7362 ax-pre-ltadd 7363 ax-pre-mulgt0 7364 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4406 df-rel 4407 df-cnv 4408 df-co 4409 df-dm 4410 df-rn 4411 df-res 4412 df-ima 4413 df-iota 4933 df-fun 4970 df-fn 4971 df-f 4972 df-f1 4973 df-fo 4974 df-f1o 4975 df-fv 4976 df-riota 5546 df-ov 5593 df-oprab 5594 df-mpt2 5595 df-recs 6001 df-frec 6087 df-1o 6112 df-er 6221 df-en 6387 df-dom 6388 df-fin 6389 df-pnf 7426 df-mnf 7427 df-xr 7428 df-ltxr 7429 df-le 7430 df-sub 7557 df-neg 7558 df-reap 7951 df-ap 7958 df-inn 8316 df-n0 8565 df-z 8646 df-uz 8914 df-fz 9319 df-ihash 10018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |