| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fihashneq0 | GIF version | ||
| Description: Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 7035. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
| Ref | Expression |
|---|---|
| fihashneq0 | ⊢ (𝐴 ∈ Fin → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl 10990 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 2 | 1 | nn0zd 9555 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℤ) |
| 3 | 0zd 9446 | . . 3 ⊢ (𝐴 ∈ Fin → 0 ∈ ℤ) | |
| 4 | zapne 9509 | . . 3 ⊢ (((♯‘𝐴) ∈ ℤ ∧ 0 ∈ ℤ) → ((♯‘𝐴) # 0 ↔ (♯‘𝐴) ≠ 0)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) # 0 ↔ (♯‘𝐴) ≠ 0)) |
| 6 | nn0re 9366 | . . . 4 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ) | |
| 7 | nn0ge0 9382 | . . . 4 ⊢ ((♯‘𝐴) ∈ ℕ0 → 0 ≤ (♯‘𝐴)) | |
| 8 | ap0gt0 8775 | . . . 4 ⊢ (((♯‘𝐴) ∈ ℝ ∧ 0 ≤ (♯‘𝐴)) → ((♯‘𝐴) # 0 ↔ 0 < (♯‘𝐴))) | |
| 9 | 6, 7, 8 | syl2anc 411 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) # 0 ↔ 0 < (♯‘𝐴))) |
| 10 | 1, 9 | syl 14 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) # 0 ↔ 0 < (♯‘𝐴))) |
| 11 | fihasheq0 11002 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
| 12 | 11 | necon3bid 2441 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
| 13 | 5, 10, 12 | 3bitr3d 218 | 1 ⊢ (𝐴 ∈ Fin → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 class class class wbr 4082 ‘cfv 5314 Fincfn 6877 ℝcr 7986 0cc0 7987 < clt 8169 ≤ cle 8170 # cap 8716 ℕ0cn0 9357 ℤcz 9434 ♯chash 10984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-recs 6441 df-frec 6527 df-1o 6552 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-ihash 10985 |
| This theorem is referenced by: wrdlenge1n0 11091 swrdlsw 11187 pfxsuff1eqwrdeq 11217 ccats1pfxeq 11232 ccats1pfxeqrex 11233 |
| Copyright terms: Public domain | W3C validator |