| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addneintr2d | GIF version | ||
| Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8301. Consequence of addcan2d 8299. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| addcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| addneintr2d.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| addneintr2d | ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addneintr2d.4 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | addcand.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | addcand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | addcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | 2, 3, 4 | addcan2d 8299 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| 6 | 5 | necon3bid 2421 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) ≠ (𝐵 + 𝐶) ↔ 𝐴 ≠ 𝐵)) |
| 7 | 1, 6 | mpbird 167 | 1 ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ≠ wne 2380 (class class class)co 5974 ℂcc 7965 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 |
| This theorem is referenced by: modsumfzodifsn 10585 |
| Copyright terms: Public domain | W3C validator |