![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addneintr2d | GIF version |
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8208. Consequence of addcan2d 8206. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
addcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
addneintr2d.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
addneintr2d | ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addneintr2d.4 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | addcand.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addcand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | addcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 2, 3, 4 | addcan2d 8206 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
6 | 5 | necon3bid 2405 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) ≠ (𝐵 + 𝐶) ↔ 𝐴 ≠ 𝐵)) |
7 | 1, 6 | mpbird 167 | 1 ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ≠ wne 2364 (class class class)co 5919 ℂcc 7872 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: modsumfzodifsn 10470 |
Copyright terms: Public domain | W3C validator |