ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintr2d GIF version

Theorem addneintr2d 8160
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8158. Consequence of addcan2d 8156. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1 (𝜑𝐴 ∈ ℂ)
addcand.2 (𝜑𝐵 ∈ ℂ)
addcand.3 (𝜑𝐶 ∈ ℂ)
addneintr2d.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
addneintr2d (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶))

Proof of Theorem addneintr2d
StepHypRef Expression
1 addneintr2d.4 . 2 (𝜑𝐴𝐵)
2 addcand.1 . . . 4 (𝜑𝐴 ∈ ℂ)
3 addcand.2 . . . 4 (𝜑𝐵 ∈ ℂ)
4 addcand.3 . . . 4 (𝜑𝐶 ∈ ℂ)
52, 3, 4addcan2d 8156 . . 3 (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
65necon3bid 2398 . 2 (𝜑 → ((𝐴 + 𝐶) ≠ (𝐵 + 𝐶) ↔ 𝐴𝐵))
71, 6mpbird 167 1 (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2158  wne 2357  (class class class)co 5888  cc 7823   + caddc 7828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-resscn 7917  ax-1cn 7918  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891
This theorem is referenced by:  modsumfzodifsn  10410
  Copyright terms: Public domain W3C validator