ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintr2d GIF version

Theorem addneintr2d 7974
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 7972. Consequence of addcan2d 7970. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1 (𝜑𝐴 ∈ ℂ)
addcand.2 (𝜑𝐵 ∈ ℂ)
addcand.3 (𝜑𝐶 ∈ ℂ)
addneintr2d.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
addneintr2d (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶))

Proof of Theorem addneintr2d
StepHypRef Expression
1 addneintr2d.4 . 2 (𝜑𝐴𝐵)
2 addcand.1 . . . 4 (𝜑𝐴 ∈ ℂ)
3 addcand.2 . . . 4 (𝜑𝐵 ∈ ℂ)
4 addcand.3 . . . 4 (𝜑𝐶 ∈ ℂ)
52, 3, 4addcan2d 7970 . . 3 (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
65necon3bid 2350 . 2 (𝜑 → ((𝐴 + 𝐶) ≠ (𝐵 + 𝐶) ↔ 𝐴𝐵))
71, 6mpbird 166 1 (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1481  wne 2309  (class class class)co 5781  cc 7641   + caddc 7646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-resscn 7735  ax-1cn 7736  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-iota 5095  df-fv 5138  df-ov 5784
This theorem is referenced by:  modsumfzodifsn  10199
  Copyright terms: Public domain W3C validator