Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addneintr2d | GIF version |
Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad 8106. Consequence of addcan2d 8104. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
addcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
addneintr2d.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
addneintr2d | ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addneintr2d.4 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | addcand.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addcand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | addcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 2, 3, 4 | addcan2d 8104 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
6 | 5 | necon3bid 2381 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) ≠ (𝐵 + 𝐶) ↔ 𝐴 ≠ 𝐵)) |
7 | 1, 6 | mpbird 166 | 1 ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ≠ wne 2340 (class class class)co 5853 ℂcc 7772 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: modsumfzodifsn 10352 |
Copyright terms: Public domain | W3C validator |