| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addneintrd | GIF version | ||
| Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 8328. Consequence of addcand 8326. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| addcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| addneintrd.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| addneintrd | ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addneintrd.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 2 | addcand.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | addcand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | addcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | 2, 3, 4 | addcand 8326 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| 6 | 5 | necon3bid 2441 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) ≠ (𝐴 + 𝐶) ↔ 𝐵 ≠ 𝐶)) |
| 7 | 1, 6 | mpbird 167 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ≠ wne 2400 (class class class)co 6000 ℂcc 7993 + caddc 7998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |