ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addneintrd GIF version

Theorem addneintrd 8295
Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 8293. Consequence of addcand 8291. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1 (𝜑𝐴 ∈ ℂ)
addcand.2 (𝜑𝐵 ∈ ℂ)
addcand.3 (𝜑𝐶 ∈ ℂ)
addneintrd.4 (𝜑𝐵𝐶)
Assertion
Ref Expression
addneintrd (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶))

Proof of Theorem addneintrd
StepHypRef Expression
1 addneintrd.4 . 2 (𝜑𝐵𝐶)
2 addcand.1 . . . 4 (𝜑𝐴 ∈ ℂ)
3 addcand.2 . . . 4 (𝜑𝐵 ∈ ℂ)
4 addcand.3 . . . 4 (𝜑𝐶 ∈ ℂ)
52, 3, 4addcand 8291 . . 3 (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
65necon3bid 2419 . 2 (𝜑 → ((𝐴 + 𝐵) ≠ (𝐴 + 𝐶) ↔ 𝐵𝐶))
71, 6mpbird 167 1 (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  wne 2378  (class class class)co 5967  cc 7958   + caddc 7963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator