| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addneintrd | GIF version | ||
| Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 8293. Consequence of addcand 8291. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| addcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| addneintrd.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| addneintrd | ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addneintrd.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 2 | addcand.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | addcand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | addcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | 2, 3, 4 | addcand 8291 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| 6 | 5 | necon3bid 2419 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) ≠ (𝐴 + 𝐶) ↔ 𝐵 ≠ 𝐶)) |
| 7 | 1, 6 | mpbird 167 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ≠ wne 2378 (class class class)co 5967 ℂcc 7958 + caddc 7963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |