ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne GIF version

Theorem qapne 9568
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))

Proof of Theorem qapne
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9551 . . . 4 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
21biimpi 119 . . 3 (𝐵 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
32adantl 275 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
4 simplll 523 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → 𝐴 ∈ ℚ)
5 elq 9551 . . . . . 6 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
64, 5sylib 121 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
7 simplrl 525 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
87zcnd 9305 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
9 simprl 521 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑧 ∈ ℤ)
109ad3antrrr 484 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
1110zcnd 9305 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
12 simprr 522 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
1312ad3antrrr 484 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
1413nncnd 8862 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
15 nnap0 8877 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℕ → 𝑤 # 0)
1613, 15syl 14 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 # 0)
1711, 14, 16divclapd 8677 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) ∈ ℂ)
18 simplrr 526 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1918nncnd 8862 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2017, 19mulcld 7910 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 𝑦) ∈ ℂ)
21 nnap0 8877 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 # 0)
2218, 21syl 14 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 # 0)
2319, 22recclapd 8668 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) ∈ ℂ)
2419, 22recap0d 8669 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) # 0)
25 apmul1 8675 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ ((𝑧 / 𝑤) · 𝑦) ∈ ℂ ∧ ((1 / 𝑦) ∈ ℂ ∧ (1 / 𝑦) # 0)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
268, 20, 23, 24, 25syl112anc 1231 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
278, 19, 22divrecapd 8680 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
2827eqcomd 2170 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (1 / 𝑦)) = (𝑥 / 𝑦))
2917, 19, 23mulassd 7913 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))))
3019, 22recidapd 8670 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (1 / 𝑦)) = 1)
3130oveq2d 5852 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))) = ((𝑧 / 𝑤) · 1))
3217mulid1d 7907 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 1) = (𝑧 / 𝑤))
3329, 31, 323eqtrd 2201 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = (𝑧 / 𝑤))
3428, 33breq12d 3989 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3526, 34bitrd 187 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3613nnzd 9303 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
377, 36zmulcld 9310 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
3837zcnd 9305 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℂ)
3918nnzd 9303 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
4039, 10zmulcld 9310 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℤ)
4140zcnd 9305 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℂ)
4214, 16recclapd 8668 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) ∈ ℂ)
4314, 16recap0d 8669 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) # 0)
44 apmul1 8675 . . . . . . . . . . . . 13 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ ∧ ((1 / 𝑤) ∈ ℂ ∧ (1 / 𝑤) # 0)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
4538, 41, 42, 43, 44syl112anc 1231 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
468, 14, 42mulassd 7913 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = (𝑥 · (𝑤 · (1 / 𝑤))))
4714, 16recidapd 8670 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑤 · (1 / 𝑤)) = 1)
4847oveq2d 5852 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (𝑤 · (1 / 𝑤))) = (𝑥 · 1))
498mulid1d 7907 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 1) = 𝑥)
5046, 48, 493eqtrd 2201 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = 𝑥)
5150breq1d 3986 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5245, 51bitrd 187 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5319, 11, 42mulassd 7913 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5411, 14, 16divrecapd 8680 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) = (𝑧 · (1 / 𝑤)))
5554oveq2d 5852 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5619, 17mulcomd 7911 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5753, 55, 563eqtr2d 2203 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5857breq2d 3988 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
5952, 58bitrd 187 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
60 simpr 109 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 = (𝑥 / 𝑦))
61 simpllr 524 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 = (𝑧 / 𝑤))
6260, 61breq12d 3989 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
6335, 59, 623bitr4d 219 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝐴 # 𝐵))
64 zapne 9256 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6537, 40, 64syl2anc 409 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6663, 65bitr3d 189 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6763notbid 657 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (¬ (𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ¬ 𝐴 # 𝐵))
68 apti 8511 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
6938, 41, 68syl2anc 409 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
70 qcn 9563 . . . . . . . . . . . . 13 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
7170ad2antrr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝐴 ∈ ℂ)
7271ad3antrrr 484 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 ∈ ℂ)
7361, 17eqeltrd 2241 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 ∈ ℂ)
74 apti 8511 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7572, 73, 74syl2anc 409 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7667, 69, 753bitr4d 219 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ 𝐴 = 𝐵))
7776necon3bid 2375 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) ≠ (𝑦 · 𝑧) ↔ 𝐴𝐵))
7866, 77bitrd 187 . . . . . . 7 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵𝐴𝐵))
7978ex 114 . . . . . 6 (((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
8079rexlimdvva 2589 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
816, 80mpd 13 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 # 𝐵𝐴𝐵))
8281ex 114 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
8382rexlimdvva 2589 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
843, 83mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  wne 2334  wrex 2443   class class class wbr 3976  (class class class)co 5836  cc 7742  0cc0 7744  1c1 7745   · cmul 7749   # cap 8470   / cdiv 8559  cn 8848  cz 9182  cq 9548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-n0 9106  df-z 9183  df-q 9549
This theorem is referenced by:  qltlen  9569  qlttri2  9570  qreccl  9571  qdivcl  9572  irrmul  9576  flqltnz  10212  modqmulnn  10267  qexpclz  10466  sqrt2irraplemnn  12088  pceu  12204  pcdiv  12211  pcqdiv  12216  pcexp  12218  pcaddlem  12247  qexpz  12259  apdiff  13761
  Copyright terms: Public domain W3C validator