ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne GIF version

Theorem qapne 9790
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))

Proof of Theorem qapne
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9773 . . . 4 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
21biimpi 120 . . 3 (𝐵 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
32adantl 277 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
4 simplll 533 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → 𝐴 ∈ ℚ)
5 elq 9773 . . . . . 6 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
64, 5sylib 122 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
7 simplrl 535 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
87zcnd 9526 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
9 simprl 529 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑧 ∈ ℤ)
109ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
1110zcnd 9526 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
12 simprr 531 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
1312ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
1413nncnd 9080 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
15 nnap0 9095 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℕ → 𝑤 # 0)
1613, 15syl 14 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 # 0)
1711, 14, 16divclapd 8893 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) ∈ ℂ)
18 simplrr 536 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1918nncnd 9080 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2017, 19mulcld 8123 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 𝑦) ∈ ℂ)
21 nnap0 9095 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 # 0)
2218, 21syl 14 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 # 0)
2319, 22recclapd 8884 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) ∈ ℂ)
2419, 22recap0d 8885 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) # 0)
25 apmul1 8891 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ ((𝑧 / 𝑤) · 𝑦) ∈ ℂ ∧ ((1 / 𝑦) ∈ ℂ ∧ (1 / 𝑦) # 0)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
268, 20, 23, 24, 25syl112anc 1254 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
278, 19, 22divrecapd 8896 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
2827eqcomd 2212 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (1 / 𝑦)) = (𝑥 / 𝑦))
2917, 19, 23mulassd 8126 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))))
3019, 22recidapd 8886 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (1 / 𝑦)) = 1)
3130oveq2d 5978 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))) = ((𝑧 / 𝑤) · 1))
3217mulridd 8119 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 1) = (𝑧 / 𝑤))
3329, 31, 323eqtrd 2243 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = (𝑧 / 𝑤))
3428, 33breq12d 4067 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3526, 34bitrd 188 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3613nnzd 9524 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
377, 36zmulcld 9531 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
3837zcnd 9526 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℂ)
3918nnzd 9524 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
4039, 10zmulcld 9531 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℤ)
4140zcnd 9526 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℂ)
4214, 16recclapd 8884 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) ∈ ℂ)
4314, 16recap0d 8885 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) # 0)
44 apmul1 8891 . . . . . . . . . . . . 13 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ ∧ ((1 / 𝑤) ∈ ℂ ∧ (1 / 𝑤) # 0)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
4538, 41, 42, 43, 44syl112anc 1254 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
468, 14, 42mulassd 8126 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = (𝑥 · (𝑤 · (1 / 𝑤))))
4714, 16recidapd 8886 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑤 · (1 / 𝑤)) = 1)
4847oveq2d 5978 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (𝑤 · (1 / 𝑤))) = (𝑥 · 1))
498mulridd 8119 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 1) = 𝑥)
5046, 48, 493eqtrd 2243 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = 𝑥)
5150breq1d 4064 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5245, 51bitrd 188 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5319, 11, 42mulassd 8126 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5411, 14, 16divrecapd 8896 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) = (𝑧 · (1 / 𝑤)))
5554oveq2d 5978 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5619, 17mulcomd 8124 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5753, 55, 563eqtr2d 2245 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5857breq2d 4066 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
5952, 58bitrd 188 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
60 simpr 110 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 = (𝑥 / 𝑦))
61 simpllr 534 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 = (𝑧 / 𝑤))
6260, 61breq12d 4067 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
6335, 59, 623bitr4d 220 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝐴 # 𝐵))
64 zapne 9477 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6537, 40, 64syl2anc 411 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6663, 65bitr3d 190 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6763notbid 669 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (¬ (𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ¬ 𝐴 # 𝐵))
68 apti 8725 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
6938, 41, 68syl2anc 411 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
70 qcn 9785 . . . . . . . . . . . . 13 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
7170ad2antrr 488 . . . . . . . . . . . 12 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝐴 ∈ ℂ)
7271ad3antrrr 492 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 ∈ ℂ)
7361, 17eqeltrd 2283 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 ∈ ℂ)
74 apti 8725 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7572, 73, 74syl2anc 411 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7667, 69, 753bitr4d 220 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ 𝐴 = 𝐵))
7776necon3bid 2418 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) ≠ (𝑦 · 𝑧) ↔ 𝐴𝐵))
7866, 77bitrd 188 . . . . . . 7 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵𝐴𝐵))
7978ex 115 . . . . . 6 (((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
8079rexlimdvva 2632 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
816, 80mpd 13 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 # 𝐵𝐴𝐵))
8281ex 115 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
8382rexlimdvva 2632 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
843, 83mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wne 2377  wrex 2486   class class class wbr 4054  (class class class)co 5962  cc 7953  0cc0 7955  1c1 7956   · cmul 7960   # cap 8684   / cdiv 8775  cn 9066  cz 9402  cq 9770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-n0 9326  df-z 9403  df-q 9771
This theorem is referenced by:  qltlen  9791  qlttri2  9792  qreccl  9793  qdivcl  9794  irrmul  9798  irrmulap  9799  flqltnz  10462  modqmulnn  10519  qexpclz  10737  sqrt2irraplemnn  12586  pceu  12703  pcdiv  12710  pcqdiv  12715  pcexp  12717  pcaddlem  12747  qexpz  12760  apdiff  16159
  Copyright terms: Public domain W3C validator