ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne GIF version

Theorem qapne 9704
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))

Proof of Theorem qapne
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9687 . . . 4 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
21biimpi 120 . . 3 (𝐵 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
32adantl 277 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
4 simplll 533 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → 𝐴 ∈ ℚ)
5 elq 9687 . . . . . 6 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
64, 5sylib 122 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
7 simplrl 535 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
87zcnd 9440 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
9 simprl 529 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑧 ∈ ℤ)
109ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
1110zcnd 9440 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
12 simprr 531 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
1312ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
1413nncnd 8996 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
15 nnap0 9011 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℕ → 𝑤 # 0)
1613, 15syl 14 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 # 0)
1711, 14, 16divclapd 8809 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) ∈ ℂ)
18 simplrr 536 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1918nncnd 8996 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2017, 19mulcld 8040 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 𝑦) ∈ ℂ)
21 nnap0 9011 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 # 0)
2218, 21syl 14 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 # 0)
2319, 22recclapd 8800 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) ∈ ℂ)
2419, 22recap0d 8801 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) # 0)
25 apmul1 8807 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ ((𝑧 / 𝑤) · 𝑦) ∈ ℂ ∧ ((1 / 𝑦) ∈ ℂ ∧ (1 / 𝑦) # 0)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
268, 20, 23, 24, 25syl112anc 1253 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
278, 19, 22divrecapd 8812 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
2827eqcomd 2199 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (1 / 𝑦)) = (𝑥 / 𝑦))
2917, 19, 23mulassd 8043 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))))
3019, 22recidapd 8802 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (1 / 𝑦)) = 1)
3130oveq2d 5934 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))) = ((𝑧 / 𝑤) · 1))
3217mulridd 8036 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 1) = (𝑧 / 𝑤))
3329, 31, 323eqtrd 2230 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = (𝑧 / 𝑤))
3428, 33breq12d 4042 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3526, 34bitrd 188 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3613nnzd 9438 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
377, 36zmulcld 9445 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
3837zcnd 9440 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℂ)
3918nnzd 9438 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
4039, 10zmulcld 9445 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℤ)
4140zcnd 9440 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℂ)
4214, 16recclapd 8800 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) ∈ ℂ)
4314, 16recap0d 8801 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) # 0)
44 apmul1 8807 . . . . . . . . . . . . 13 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ ∧ ((1 / 𝑤) ∈ ℂ ∧ (1 / 𝑤) # 0)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
4538, 41, 42, 43, 44syl112anc 1253 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
468, 14, 42mulassd 8043 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = (𝑥 · (𝑤 · (1 / 𝑤))))
4714, 16recidapd 8802 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑤 · (1 / 𝑤)) = 1)
4847oveq2d 5934 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (𝑤 · (1 / 𝑤))) = (𝑥 · 1))
498mulridd 8036 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 1) = 𝑥)
5046, 48, 493eqtrd 2230 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = 𝑥)
5150breq1d 4039 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5245, 51bitrd 188 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5319, 11, 42mulassd 8043 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5411, 14, 16divrecapd 8812 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) = (𝑧 · (1 / 𝑤)))
5554oveq2d 5934 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5619, 17mulcomd 8041 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5753, 55, 563eqtr2d 2232 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5857breq2d 4041 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
5952, 58bitrd 188 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
60 simpr 110 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 = (𝑥 / 𝑦))
61 simpllr 534 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 = (𝑧 / 𝑤))
6260, 61breq12d 4042 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
6335, 59, 623bitr4d 220 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝐴 # 𝐵))
64 zapne 9391 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6537, 40, 64syl2anc 411 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6663, 65bitr3d 190 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6763notbid 668 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (¬ (𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ¬ 𝐴 # 𝐵))
68 apti 8641 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
6938, 41, 68syl2anc 411 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
70 qcn 9699 . . . . . . . . . . . . 13 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
7170ad2antrr 488 . . . . . . . . . . . 12 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝐴 ∈ ℂ)
7271ad3antrrr 492 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 ∈ ℂ)
7361, 17eqeltrd 2270 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 ∈ ℂ)
74 apti 8641 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7572, 73, 74syl2anc 411 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7667, 69, 753bitr4d 220 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ 𝐴 = 𝐵))
7776necon3bid 2405 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) ≠ (𝑦 · 𝑧) ↔ 𝐴𝐵))
7866, 77bitrd 188 . . . . . . 7 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵𝐴𝐵))
7978ex 115 . . . . . 6 (((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
8079rexlimdvva 2619 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
816, 80mpd 13 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 # 𝐵𝐴𝐵))
8281ex 115 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
8382rexlimdvva 2619 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
843, 83mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wne 2364  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   · cmul 7877   # cap 8600   / cdiv 8691  cn 8982  cz 9317  cq 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-q 9685
This theorem is referenced by:  qltlen  9705  qlttri2  9706  qreccl  9707  qdivcl  9708  irrmul  9712  irrmulap  9713  flqltnz  10356  modqmulnn  10413  qexpclz  10631  sqrt2irraplemnn  12317  pceu  12433  pcdiv  12440  pcqdiv  12445  pcexp  12447  pcaddlem  12477  qexpz  12490  apdiff  15538
  Copyright terms: Public domain W3C validator