ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne GIF version

Theorem qapne 9281
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))

Proof of Theorem qapne
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9264 . . . 4 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
21biimpi 119 . . 3 (𝐵 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
32adantl 273 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
4 simplll 503 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → 𝐴 ∈ ℚ)
5 elq 9264 . . . . . 6 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
64, 5sylib 121 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
7 simplrl 505 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
87zcnd 9026 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
9 simprl 501 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑧 ∈ ℤ)
109ad3antrrr 479 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
1110zcnd 9026 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
12 simprr 502 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
1312ad3antrrr 479 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
1413nncnd 8592 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
15 nnap0 8607 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℕ → 𝑤 # 0)
1613, 15syl 14 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 # 0)
1711, 14, 16divclapd 8411 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) ∈ ℂ)
18 simplrr 506 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1918nncnd 8592 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2017, 19mulcld 7658 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 𝑦) ∈ ℂ)
21 nnap0 8607 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 # 0)
2218, 21syl 14 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 # 0)
2319, 22recclapd 8402 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) ∈ ℂ)
2419, 22recap0d 8403 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) # 0)
25 apmul1 8409 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ ((𝑧 / 𝑤) · 𝑦) ∈ ℂ ∧ ((1 / 𝑦) ∈ ℂ ∧ (1 / 𝑦) # 0)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
268, 20, 23, 24, 25syl112anc 1188 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
278, 19, 22divrecapd 8414 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
2827eqcomd 2105 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (1 / 𝑦)) = (𝑥 / 𝑦))
2917, 19, 23mulassd 7661 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))))
3019, 22recidapd 8404 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (1 / 𝑦)) = 1)
3130oveq2d 5722 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))) = ((𝑧 / 𝑤) · 1))
3217mulid1d 7655 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 1) = (𝑧 / 𝑤))
3329, 31, 323eqtrd 2136 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = (𝑧 / 𝑤))
3428, 33breq12d 3888 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3526, 34bitrd 187 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3613nnzd 9024 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
377, 36zmulcld 9031 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
3837zcnd 9026 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℂ)
3918nnzd 9024 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
4039, 10zmulcld 9031 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℤ)
4140zcnd 9026 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℂ)
4214, 16recclapd 8402 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) ∈ ℂ)
4314, 16recap0d 8403 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) # 0)
44 apmul1 8409 . . . . . . . . . . . . 13 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ ∧ ((1 / 𝑤) ∈ ℂ ∧ (1 / 𝑤) # 0)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
4538, 41, 42, 43, 44syl112anc 1188 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
468, 14, 42mulassd 7661 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = (𝑥 · (𝑤 · (1 / 𝑤))))
4714, 16recidapd 8404 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑤 · (1 / 𝑤)) = 1)
4847oveq2d 5722 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (𝑤 · (1 / 𝑤))) = (𝑥 · 1))
498mulid1d 7655 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 1) = 𝑥)
5046, 48, 493eqtrd 2136 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = 𝑥)
5150breq1d 3885 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5245, 51bitrd 187 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5319, 11, 42mulassd 7661 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5411, 14, 16divrecapd 8414 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) = (𝑧 · (1 / 𝑤)))
5554oveq2d 5722 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5619, 17mulcomd 7659 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5753, 55, 563eqtr2d 2138 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5857breq2d 3887 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
5952, 58bitrd 187 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
60 simpr 109 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 = (𝑥 / 𝑦))
61 simpllr 504 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 = (𝑧 / 𝑤))
6260, 61breq12d 3888 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
6335, 59, 623bitr4d 219 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝐴 # 𝐵))
64 zapne 8977 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6537, 40, 64syl2anc 406 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6663, 65bitr3d 189 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6763notbid 633 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (¬ (𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ¬ 𝐴 # 𝐵))
68 apti 8250 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
6938, 41, 68syl2anc 406 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
70 qcn 9276 . . . . . . . . . . . . 13 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
7170ad2antrr 475 . . . . . . . . . . . 12 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝐴 ∈ ℂ)
7271ad3antrrr 479 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 ∈ ℂ)
7361, 17eqeltrd 2176 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 ∈ ℂ)
74 apti 8250 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7572, 73, 74syl2anc 406 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7667, 69, 753bitr4d 219 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ 𝐴 = 𝐵))
7776necon3bid 2308 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) ≠ (𝑦 · 𝑧) ↔ 𝐴𝐵))
7866, 77bitrd 187 . . . . . . 7 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵𝐴𝐵))
7978ex 114 . . . . . 6 (((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
8079rexlimdvva 2516 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
816, 80mpd 13 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 # 𝐵𝐴𝐵))
8281ex 114 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
8382rexlimdvva 2516 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
843, 83mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  wne 2267  wrex 2376   class class class wbr 3875  (class class class)co 5706  cc 7498  0cc0 7500  1c1 7501   · cmul 7505   # cap 8209   / cdiv 8293  cn 8578  cz 8906  cq 9261
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-n0 8830  df-z 8907  df-q 9262
This theorem is referenced by:  qltlen  9282  qlttri2  9283  qreccl  9284  qdivcl  9285  irrmul  9289  flqltnz  9901  modqmulnn  9956  qexpclz  10155  sqrt2irraplemnn  11649
  Copyright terms: Public domain W3C validator