ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixpxy GIF version

Theorem nfixpxy 6611
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
Hypotheses
Ref Expression
nfixp.1 𝑦𝐴
nfixp.2 𝑦𝐵
Assertion
Ref Expression
nfixpxy 𝑦X𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfixpxy
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6593 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
2 nfcv 2281 . . . . 5 𝑦𝑧
3 nftru 1442 . . . . . . 7 𝑥
4 nfcvd 2282 . . . . . . . 8 (⊤ → 𝑦𝑥)
5 nfixp.1 . . . . . . . . 9 𝑦𝐴
65a1i 9 . . . . . . . 8 (⊤ → 𝑦𝐴)
74, 6nfeld 2297 . . . . . . 7 (⊤ → Ⅎ𝑦 𝑥𝐴)
83, 7nfabd 2300 . . . . . 6 (⊤ → 𝑦{𝑥𝑥𝐴})
98mptru 1340 . . . . 5 𝑦{𝑥𝑥𝐴}
102, 9nffn 5219 . . . 4 𝑦 𝑧 Fn {𝑥𝑥𝐴}
11 df-ral 2421 . . . . 5 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
122a1i 9 . . . . . . . . . 10 (⊤ → 𝑦𝑧)
1312, 4nffvd 5433 . . . . . . . . 9 (⊤ → 𝑦(𝑧𝑥))
14 nfixp.2 . . . . . . . . . 10 𝑦𝐵
1514a1i 9 . . . . . . . . 9 (⊤ → 𝑦𝐵)
1613, 15nfeld 2297 . . . . . . . 8 (⊤ → Ⅎ𝑦(𝑧𝑥) ∈ 𝐵)
177, 16nfimd 1564 . . . . . . 7 (⊤ → Ⅎ𝑦(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
183, 17nfald 1733 . . . . . 6 (⊤ → Ⅎ𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
1918mptru 1340 . . . . 5 𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵)
2011, 19nfxfr 1450 . . . 4 𝑦𝑥𝐴 (𝑧𝑥) ∈ 𝐵
2110, 20nfan 1544 . . 3 𝑦(𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)
2221nfab 2286 . 2 𝑦{𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
231, 22nfcxfr 2278 1 𝑦X𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1329  wtru 1332  wnf 1436  wcel 1480  {cab 2125  wnfc 2268  wral 2416   Fn wfn 5118  cfv 5123  Xcixp 6592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-ixp 6593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator