| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfixpxy | GIF version | ||
| Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.) |
| Ref | Expression |
|---|---|
| nfixp.1 | ⊢ Ⅎ𝑦𝐴 |
| nfixp.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfixpxy | ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 6786 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 2 | nfcv 2348 | . . . . 5 ⊢ Ⅎ𝑦𝑧 | |
| 3 | nftru 1489 | . . . . . . 7 ⊢ Ⅎ𝑥⊤ | |
| 4 | nfcvd 2349 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦𝑥) | |
| 5 | nfixp.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
| 6 | 5 | a1i 9 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦𝐴) |
| 7 | 4, 6 | nfeld 2364 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦 𝑥 ∈ 𝐴) |
| 8 | 3, 7 | nfabd 2368 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 9 | 8 | mptru 1382 | . . . . 5 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
| 10 | 2, 9 | nffn 5370 | . . . 4 ⊢ Ⅎ𝑦 𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 11 | df-ral 2489 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | |
| 12 | 2 | a1i 9 | . . . . . . . . . 10 ⊢ (⊤ → Ⅎ𝑦𝑧) |
| 13 | 12, 4 | nffvd 5588 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥)) |
| 14 | nfixp.2 | . . . . . . . . . 10 ⊢ Ⅎ𝑦𝐵 | |
| 15 | 14 | a1i 9 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦𝐵) |
| 16 | 13, 15 | nfeld 2364 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥) ∈ 𝐵) |
| 17 | 7, 16 | nfimd 1608 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 18 | 3, 17 | nfald 1783 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 19 | 18 | mptru 1382 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵) |
| 20 | 11, 19 | nfxfr 1497 | . . . 4 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 |
| 21 | 10, 20 | nfan 1588 | . . 3 ⊢ Ⅎ𝑦(𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) |
| 22 | 21 | nfab 2353 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} |
| 23 | 1, 22 | nfcxfr 2345 | 1 ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ⊤wtru 1374 Ⅎwnf 1483 ∈ wcel 2176 {cab 2191 Ⅎwnfc 2335 ∀wral 2484 Fn wfn 5266 ‘cfv 5271 Xcixp 6785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ixp 6786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |