ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixpxy GIF version

Theorem nfixpxy 6827
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
Hypotheses
Ref Expression
nfixp.1 𝑦𝐴
nfixp.2 𝑦𝐵
Assertion
Ref Expression
nfixpxy 𝑦X𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfixpxy
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6809 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
2 nfcv 2350 . . . . 5 𝑦𝑧
3 nftru 1490 . . . . . . 7 𝑥
4 nfcvd 2351 . . . . . . . 8 (⊤ → 𝑦𝑥)
5 nfixp.1 . . . . . . . . 9 𝑦𝐴
65a1i 9 . . . . . . . 8 (⊤ → 𝑦𝐴)
74, 6nfeld 2366 . . . . . . 7 (⊤ → Ⅎ𝑦 𝑥𝐴)
83, 7nfabd 2370 . . . . . 6 (⊤ → 𝑦{𝑥𝑥𝐴})
98mptru 1382 . . . . 5 𝑦{𝑥𝑥𝐴}
102, 9nffn 5389 . . . 4 𝑦 𝑧 Fn {𝑥𝑥𝐴}
11 df-ral 2491 . . . . 5 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
122a1i 9 . . . . . . . . . 10 (⊤ → 𝑦𝑧)
1312, 4nffvd 5611 . . . . . . . . 9 (⊤ → 𝑦(𝑧𝑥))
14 nfixp.2 . . . . . . . . . 10 𝑦𝐵
1514a1i 9 . . . . . . . . 9 (⊤ → 𝑦𝐵)
1613, 15nfeld 2366 . . . . . . . 8 (⊤ → Ⅎ𝑦(𝑧𝑥) ∈ 𝐵)
177, 16nfimd 1609 . . . . . . 7 (⊤ → Ⅎ𝑦(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
183, 17nfald 1784 . . . . . 6 (⊤ → Ⅎ𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
1918mptru 1382 . . . . 5 𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵)
2011, 19nfxfr 1498 . . . 4 𝑦𝑥𝐴 (𝑧𝑥) ∈ 𝐵
2110, 20nfan 1589 . . 3 𝑦(𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)
2221nfab 2355 . 2 𝑦{𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
231, 22nfcxfr 2347 1 𝑦X𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wtru 1374  wnf 1484  wcel 2178  {cab 2193  wnfc 2337  wral 2486   Fn wfn 5285  cfv 5290  Xcixp 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ixp 6809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator