| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfixpxy | GIF version | ||
| Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.) |
| Ref | Expression |
|---|---|
| nfixp.1 | ⊢ Ⅎ𝑦𝐴 |
| nfixp.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfixpxy | ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 6846 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 2 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑦𝑧 | |
| 3 | nftru 1512 | . . . . . . 7 ⊢ Ⅎ𝑥⊤ | |
| 4 | nfcvd 2373 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦𝑥) | |
| 5 | nfixp.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
| 6 | 5 | a1i 9 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦𝐴) |
| 7 | 4, 6 | nfeld 2388 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦 𝑥 ∈ 𝐴) |
| 8 | 3, 7 | nfabd 2392 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 9 | 8 | mptru 1404 | . . . . 5 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
| 10 | 2, 9 | nffn 5417 | . . . 4 ⊢ Ⅎ𝑦 𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 11 | df-ral 2513 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | |
| 12 | 2 | a1i 9 | . . . . . . . . . 10 ⊢ (⊤ → Ⅎ𝑦𝑧) |
| 13 | 12, 4 | nffvd 5639 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥)) |
| 14 | nfixp.2 | . . . . . . . . . 10 ⊢ Ⅎ𝑦𝐵 | |
| 15 | 14 | a1i 9 | . . . . . . . . 9 ⊢ (⊤ → Ⅎ𝑦𝐵) |
| 16 | 13, 15 | nfeld 2388 | . . . . . . . 8 ⊢ (⊤ → Ⅎ𝑦(𝑧‘𝑥) ∈ 𝐵) |
| 17 | 7, 16 | nfimd 1631 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 18 | 3, 17 | nfald 1806 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 19 | 18 | mptru 1404 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵) |
| 20 | 11, 19 | nfxfr 1520 | . . . 4 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 |
| 21 | 10, 20 | nfan 1611 | . . 3 ⊢ Ⅎ𝑦(𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) |
| 22 | 21 | nfab 2377 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} |
| 23 | 1, 22 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 ⊤wtru 1396 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 ∀wral 2508 Fn wfn 5313 ‘cfv 5318 Xcixp 6845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ixp 6846 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |