ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixpxy GIF version

Theorem nfixpxy 6683
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
Hypotheses
Ref Expression
nfixp.1 𝑦𝐴
nfixp.2 𝑦𝐵
Assertion
Ref Expression
nfixpxy 𝑦X𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfixpxy
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6665 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
2 nfcv 2308 . . . . 5 𝑦𝑧
3 nftru 1454 . . . . . . 7 𝑥
4 nfcvd 2309 . . . . . . . 8 (⊤ → 𝑦𝑥)
5 nfixp.1 . . . . . . . . 9 𝑦𝐴
65a1i 9 . . . . . . . 8 (⊤ → 𝑦𝐴)
74, 6nfeld 2324 . . . . . . 7 (⊤ → Ⅎ𝑦 𝑥𝐴)
83, 7nfabd 2328 . . . . . 6 (⊤ → 𝑦{𝑥𝑥𝐴})
98mptru 1352 . . . . 5 𝑦{𝑥𝑥𝐴}
102, 9nffn 5284 . . . 4 𝑦 𝑧 Fn {𝑥𝑥𝐴}
11 df-ral 2449 . . . . 5 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
122a1i 9 . . . . . . . . . 10 (⊤ → 𝑦𝑧)
1312, 4nffvd 5498 . . . . . . . . 9 (⊤ → 𝑦(𝑧𝑥))
14 nfixp.2 . . . . . . . . . 10 𝑦𝐵
1514a1i 9 . . . . . . . . 9 (⊤ → 𝑦𝐵)
1613, 15nfeld 2324 . . . . . . . 8 (⊤ → Ⅎ𝑦(𝑧𝑥) ∈ 𝐵)
177, 16nfimd 1573 . . . . . . 7 (⊤ → Ⅎ𝑦(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
183, 17nfald 1748 . . . . . 6 (⊤ → Ⅎ𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
1918mptru 1352 . . . . 5 𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵)
2011, 19nfxfr 1462 . . . 4 𝑦𝑥𝐴 (𝑧𝑥) ∈ 𝐵
2110, 20nfan 1553 . . 3 𝑦(𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)
2221nfab 2313 . 2 𝑦{𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
231, 22nfcxfr 2305 1 𝑦X𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wtru 1344  wnf 1448  wcel 2136  {cab 2151  wnfc 2295  wral 2444   Fn wfn 5183  cfv 5188  Xcixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ixp 6665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator