| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifi | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3175 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2176 ∖ cdif 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: difss 3299 ssddif 3407 noel 3464 phpm 6962 fidifsnen 6967 elfi2 7074 fiuni 7080 fifo 7082 fzdifsuc 10203 modfzo0difsn 10540 fsum3cvg 11689 summodclem2a 11692 fisumss 11703 fsumlessfi 11771 binomlem 11794 fproddccvg 11883 prodmodclem2a 11887 fprodssdc 11901 fprodeq0g 11949 fprodmodd 11952 oddprmge3 12457 oddprm 12582 nnoddn2prm 12583 nnoddn2prmb 12585 4sqlem19 12732 grpinvnzcl 13404 ringelnzr 13949 ply1termlem 15214 plyaddlem1 15219 plymullem1 15220 plycoeid3 15229 dvply1 15237 2irrexpqap 15450 lgslem1 15477 lgslem4 15480 lgsvalmod 15496 gausslemma2dlem0b 15527 gausslemma2dlem0c 15528 gausslemma2dlem1a 15535 gausslemma2dlem1cl 15536 gausslemma2dlem1f1o 15537 gausslemma2dlem4 15541 gausslemma2d 15546 lgsquad2 15560 m1lgs 15562 2lgsoddprm 15590 |
| Copyright terms: Public domain | W3C validator |