![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifi | GIF version |
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3162 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2164 ∖ cdif 3150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 |
This theorem is referenced by: difss 3285 ssddif 3393 noel 3450 phpm 6921 fidifsnen 6926 elfi2 7031 fiuni 7037 fifo 7039 fzdifsuc 10147 modfzo0difsn 10466 fsum3cvg 11521 summodclem2a 11524 fisumss 11535 fsumlessfi 11603 binomlem 11626 fproddccvg 11715 prodmodclem2a 11719 fprodssdc 11733 fprodeq0g 11781 fprodmodd 11784 oddprmge3 12273 oddprm 12397 nnoddn2prm 12398 nnoddn2prmb 12400 4sqlem19 12547 grpinvnzcl 13144 ringelnzr 13683 ply1termlem 14888 plyaddlem1 14893 plymullem1 14894 2irrexpqap 15110 lgslem1 15116 lgslem4 15119 lgsvalmod 15135 gausslemma2dlem0b 15166 gausslemma2dlem0c 15167 gausslemma2dlem1a 15174 gausslemma2dlem1cl 15175 gausslemma2dlem1f1o 15176 gausslemma2dlem4 15180 gausslemma2d 15185 m1lgs 15192 |
Copyright terms: Public domain | W3C validator |