| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifi | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 ∖ cdif 3154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: difss 3290 ssddif 3398 noel 3455 phpm 6927 fidifsnen 6932 elfi2 7039 fiuni 7045 fifo 7047 fzdifsuc 10158 modfzo0difsn 10489 fsum3cvg 11545 summodclem2a 11548 fisumss 11559 fsumlessfi 11627 binomlem 11650 fproddccvg 11739 prodmodclem2a 11743 fprodssdc 11757 fprodeq0g 11805 fprodmodd 11808 oddprmge3 12313 oddprm 12438 nnoddn2prm 12439 nnoddn2prmb 12441 4sqlem19 12588 grpinvnzcl 13214 ringelnzr 13753 ply1termlem 14988 plyaddlem1 14993 plymullem1 14994 plycoeid3 15003 dvply1 15011 2irrexpqap 15224 lgslem1 15251 lgslem4 15254 lgsvalmod 15270 gausslemma2dlem0b 15301 gausslemma2dlem0c 15302 gausslemma2dlem1a 15309 gausslemma2dlem1cl 15310 gausslemma2dlem1f1o 15311 gausslemma2dlem4 15315 gausslemma2d 15320 lgsquad2 15334 m1lgs 15336 2lgsoddprm 15364 |
| Copyright terms: Public domain | W3C validator |