| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifi | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 ∖ cdif 3154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: difss 3290 ssddif 3398 noel 3455 phpm 6935 fidifsnen 6940 elfi2 7047 fiuni 7053 fifo 7055 fzdifsuc 10173 modfzo0difsn 10504 fsum3cvg 11560 summodclem2a 11563 fisumss 11574 fsumlessfi 11642 binomlem 11665 fproddccvg 11754 prodmodclem2a 11758 fprodssdc 11772 fprodeq0g 11820 fprodmodd 11823 oddprmge3 12328 oddprm 12453 nnoddn2prm 12454 nnoddn2prmb 12456 4sqlem19 12603 grpinvnzcl 13274 ringelnzr 13819 ply1termlem 15062 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 dvply1 15085 2irrexpqap 15298 lgslem1 15325 lgslem4 15328 lgsvalmod 15344 gausslemma2dlem0b 15375 gausslemma2dlem0c 15376 gausslemma2dlem1a 15383 gausslemma2dlem1cl 15384 gausslemma2dlem1f1o 15385 gausslemma2dlem4 15389 gausslemma2d 15394 lgsquad2 15408 m1lgs 15410 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |