| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifi | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3183 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2178 ∖ cdif 3171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 |
| This theorem is referenced by: difss 3307 ssddif 3415 noel 3472 phpm 6988 fidifsnen 6993 elfi2 7100 fiuni 7106 fifo 7108 fzdifsuc 10238 modfzo0difsn 10577 fsum3cvg 11804 summodclem2a 11807 fisumss 11818 fsumlessfi 11886 binomlem 11909 fproddccvg 11998 prodmodclem2a 12002 fprodssdc 12016 fprodeq0g 12064 fprodmodd 12067 oddprmge3 12572 oddprm 12697 nnoddn2prm 12698 nnoddn2prmb 12700 4sqlem19 12847 grpinvnzcl 13519 ringelnzr 14064 ply1termlem 15329 plyaddlem1 15334 plymullem1 15335 plycoeid3 15344 dvply1 15352 2irrexpqap 15565 lgslem1 15592 lgslem4 15595 lgsvalmod 15611 gausslemma2dlem0b 15642 gausslemma2dlem0c 15643 gausslemma2dlem1a 15650 gausslemma2dlem1cl 15651 gausslemma2dlem1f1o 15652 gausslemma2dlem4 15656 gausslemma2d 15661 lgsquad2 15675 m1lgs 15677 2lgsoddprm 15705 |
| Copyright terms: Public domain | W3C validator |