| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifi | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3206 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2200 ∖ cdif 3194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 |
| This theorem is referenced by: difss 3330 ssddif 3438 noel 3495 phpm 7027 fidifsnen 7032 elfi2 7139 fiuni 7145 fifo 7147 fzdifsuc 10277 modfzo0difsn 10617 fsum3cvg 11889 summodclem2a 11892 fisumss 11903 fsumlessfi 11971 binomlem 11994 fproddccvg 12083 prodmodclem2a 12087 fprodssdc 12101 fprodeq0g 12149 fprodmodd 12152 oddprmge3 12657 oddprm 12782 nnoddn2prm 12783 nnoddn2prmb 12785 4sqlem19 12932 grpinvnzcl 13605 ringelnzr 14151 ply1termlem 15416 plyaddlem1 15421 plymullem1 15422 plycoeid3 15431 dvply1 15439 2irrexpqap 15652 lgslem1 15679 lgslem4 15682 lgsvalmod 15698 gausslemma2dlem0b 15729 gausslemma2dlem0c 15730 gausslemma2dlem1a 15737 gausslemma2dlem1cl 15738 gausslemma2dlem1f1o 15739 gausslemma2dlem4 15743 gausslemma2d 15748 lgsquad2 15762 m1lgs 15764 2lgsoddprm 15792 |
| Copyright terms: Public domain | W3C validator |