Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifi | GIF version |
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3125 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2136 ∖ cdif 3113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 |
This theorem is referenced by: difss 3248 ssddif 3356 noel 3413 phpm 6831 fidifsnen 6836 elfi2 6937 fiuni 6943 fifo 6945 fzdifsuc 10016 modfzo0difsn 10330 fsum3cvg 11319 summodclem2a 11322 fisumss 11333 fsumlessfi 11401 binomlem 11424 fproddccvg 11513 prodmodclem2a 11517 fprodssdc 11531 fprodeq0g 11579 fprodmodd 11582 oddprmge3 12067 oddprm 12191 nnoddn2prm 12192 nnoddn2prmb 12194 2irrexpqap 13536 lgslem1 13541 lgslem4 13544 lgsvalmod 13560 |
Copyright terms: Public domain | W3C validator |