| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifi | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 ∖ cdif 3154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: difss 3290 ssddif 3398 noel 3455 phpm 6935 fidifsnen 6940 elfi2 7047 fiuni 7053 fifo 7055 fzdifsuc 10175 modfzo0difsn 10506 fsum3cvg 11562 summodclem2a 11565 fisumss 11576 fsumlessfi 11644 binomlem 11667 fproddccvg 11756 prodmodclem2a 11760 fprodssdc 11774 fprodeq0g 11822 fprodmodd 11825 oddprmge3 12330 oddprm 12455 nnoddn2prm 12456 nnoddn2prmb 12458 4sqlem19 12605 grpinvnzcl 13276 ringelnzr 13821 ply1termlem 15086 plyaddlem1 15091 plymullem1 15092 plycoeid3 15101 dvply1 15109 2irrexpqap 15322 lgslem1 15349 lgslem4 15352 lgsvalmod 15368 gausslemma2dlem0b 15399 gausslemma2dlem0c 15400 gausslemma2dlem1a 15407 gausslemma2dlem1cl 15408 gausslemma2dlem1f1o 15409 gausslemma2dlem4 15413 gausslemma2d 15418 lgsquad2 15432 m1lgs 15434 2lgsoddprm 15462 |
| Copyright terms: Public domain | W3C validator |