| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifi | GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3175 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2176 ∖ cdif 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: difss 3299 ssddif 3407 noel 3464 phpm 6964 fidifsnen 6969 elfi2 7076 fiuni 7082 fifo 7084 fzdifsuc 10205 modfzo0difsn 10542 fsum3cvg 11722 summodclem2a 11725 fisumss 11736 fsumlessfi 11804 binomlem 11827 fproddccvg 11916 prodmodclem2a 11920 fprodssdc 11934 fprodeq0g 11982 fprodmodd 11985 oddprmge3 12490 oddprm 12615 nnoddn2prm 12616 nnoddn2prmb 12618 4sqlem19 12765 grpinvnzcl 13437 ringelnzr 13982 ply1termlem 15247 plyaddlem1 15252 plymullem1 15253 plycoeid3 15262 dvply1 15270 2irrexpqap 15483 lgslem1 15510 lgslem4 15513 lgsvalmod 15529 gausslemma2dlem0b 15560 gausslemma2dlem0c 15561 gausslemma2dlem1a 15568 gausslemma2dlem1cl 15569 gausslemma2dlem1f1o 15570 gausslemma2dlem4 15574 gausslemma2d 15579 lgsquad2 15593 m1lgs 15595 2lgsoddprm 15623 |
| Copyright terms: Public domain | W3C validator |