![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifi | GIF version |
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3163 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2164 ∖ cdif 3151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 |
This theorem is referenced by: difss 3286 ssddif 3394 noel 3451 phpm 6923 fidifsnen 6928 elfi2 7033 fiuni 7039 fifo 7041 fzdifsuc 10150 modfzo0difsn 10469 fsum3cvg 11524 summodclem2a 11527 fisumss 11538 fsumlessfi 11606 binomlem 11629 fproddccvg 11718 prodmodclem2a 11722 fprodssdc 11736 fprodeq0g 11784 fprodmodd 11787 oddprmge3 12276 oddprm 12400 nnoddn2prm 12401 nnoddn2prmb 12403 4sqlem19 12550 grpinvnzcl 13147 ringelnzr 13686 ply1termlem 14921 plyaddlem1 14926 plymullem1 14927 dvply1 14943 2irrexpqap 15151 lgslem1 15157 lgslem4 15160 lgsvalmod 15176 gausslemma2dlem0b 15207 gausslemma2dlem0c 15208 gausslemma2dlem1a 15215 gausslemma2dlem1cl 15216 gausslemma2dlem1f1o 15217 gausslemma2dlem4 15221 gausslemma2d 15226 lgsquad2 15240 m1lgs 15242 2lgsoddprm 15270 |
Copyright terms: Public domain | W3C validator |