ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifi GIF version

Theorem eldifi 3106
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
eldifi (𝐴 ∈ (𝐵𝐶) → 𝐴𝐵)

Proof of Theorem eldifi
StepHypRef Expression
1 eldif 2993 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
21simplbi 268 1 (𝐴 ∈ (𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 1434  cdif 2981
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2614  df-dif 2986
This theorem is referenced by:  difss  3110  ssddif  3216  noel  3273  phpm  6509  fidifsnen  6514  fzdifsuc  9386  modfzo0difsn  9689  fisumcvg  10572  oddprmge3  10894
  Copyright terms: Public domain W3C validator