| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzp1 | GIF version | ||
| Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| uzp1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzm1 9753 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) | |
| 2 | eluzp1p1 9748 | . . . 4 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ≥‘(𝑀 + 1))) | |
| 3 | eluzelcn 9733 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | |
| 4 | ax-1cn 8092 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 5 | npcan 8355 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 6 | 3, 4, 5 | sylancl 413 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) = 𝑁) |
| 7 | 6 | eleq1d 2298 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1) ∈ (ℤ≥‘(𝑀 + 1)) ↔ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 8 | 2, 7 | imbitrid 154 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 9 | 8 | orim2d 793 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀)) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))))) |
| 10 | 1, 9 | mpd 13 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6001 ℂcc 7997 1c1 8000 + caddc 8002 − cmin 8317 ℤ≥cuz 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 |
| This theorem is referenced by: fzsuc2 10275 fldiv4p1lem1div2 10525 seq3id 10747 seq3z 10750 hashfzp1 11046 telfsumo 11977 fsumparts 11981 isumsplit 12002 |
| Copyright terms: Public domain | W3C validator |