Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzp1 | GIF version |
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
uzp1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzm1 9469 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) | |
2 | eluzp1p1 9464 | . . . 4 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ≥‘(𝑀 + 1))) | |
3 | eluzelcn 9450 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | |
4 | ax-1cn 7825 | . . . . . 6 ⊢ 1 ∈ ℂ | |
5 | npcan 8084 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
6 | 3, 4, 5 | sylancl 410 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) + 1) = 𝑁) |
7 | 6 | eleq1d 2226 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑁 − 1) + 1) ∈ (ℤ≥‘(𝑀 + 1)) ↔ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
8 | 2, 7 | syl5ib 153 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
9 | 8 | orim2d 778 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀)) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))))) |
10 | 1, 9 | mpd 13 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1335 ∈ wcel 2128 ‘cfv 5170 (class class class)co 5824 ℂcc 7730 1c1 7733 + caddc 7735 − cmin 8046 ℤ≥cuz 9439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-addass 7834 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-ltadd 7848 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-inn 8834 df-n0 9091 df-z 9168 df-uz 9440 |
This theorem is referenced by: fzsuc2 9981 fldiv4p1lem1div2 10204 seq3id 10407 seq3z 10410 hashfzp1 10698 telfsumo 11363 fsumparts 11367 isumsplit 11388 |
Copyright terms: Public domain | W3C validator |